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RIT Rochester Institute of Technology 

Dean's Office 
College of Engineering 
James E. Gleason Building 
77 Lomb Memorial Drive 
Rochester, New York 14623-5603 
716-475-2145    Fax 716-475-6879 

June 1997 

Dear Conference Participant: 

I am pleased on behalf of the Rochester Institute of Technology to welcome you to 
Thermal Stresses '97. 

This international conference brings together experts from across the world. It promises to 
advance the theoretical underpinnings of this important technological area, improve our 
collective ability to analyze stress in engineered systems, and advance our capability to 
design systems, structures, and products. I am pleased that you can bring your special 
expertise to bear on this subject. 

The world has long depended on collaboration among members of the technical 
community. RJT values such international cooperation and is proud to play a role in the 
planning and implementation of this special symposium. 

I hope this conference meets your expectations in all respects and that your stay here in 
Rochester will be personally and professionally rewarding. If any of us at RIT can help 
you in any way we would be pleased to do so. 

Sincerely, 

Paul E. Petersen 
Dean, College of Engineering 



RECENT INTERESTS IN THERMAL STRESSES 

Thermal stress problems continue to attract the attention of a large international community of inves- 
tigators. Based on a survey of 87 papers* published during 1996, a number of problem areas of major con- 
cern can be identified. One area of concentration, representing over one-fifth of the reviewed papers, 
involves thermo-mechanical behaviors of anisoptropic and/or nonhomogeneous media. Among this 
group, 13 articles address problems associated with composite materials or structures, with 9 of this 
emphasizing response of laminated systems to various loads (e.g., thermal shock, combined mechanical 
and thermal loads, thermoelectric fields, etc.). Another area receiving considerable attention involves the 
potential utilization of advanced materials and "smart" structures for controlling thermal deformations; 
studies in this area have focused mainly on functionally graded media (6 articles) and piezoelectric ceram- 
ics (5). Thermally induced dynamic behaviors are investigated in 16 of the reviewed papers, with attention 
directed primarily at thermoelastic wave propagation (5), and free or forced vibrations (5) of beams, plates 
and shells. Other of the surveyed investigations treat: crack problems (8), including analysis of edge cracks 
in composite and functionally graded materials; stability problems (7) associated with thermal loading of 
beams, plates and shells; inelastic response (7), entailing viscoelastic, viscoplastic or elastic-plastic 
behaviors; development and application of numerical methods for thermal stress analysis, in particular, 
boundary element (4) and finite element techniques (3); thermoelastic contact problems (5); and exper- 
imental techniques (4) for determination of stress, damage or fracture, based upon thermoelastic data. 

As evidence of the worldwide interest in thermal stresses, it is noted that of the nearly 50 articles 
published in the Journal of Thermal Stresses during 1996, the 82 contributing authors and co-authors 
represent 19 different countries, including: Bulgaria (2 authors), Egypt (2), France (3), Georgia (1), 
Germany (1), India (7), Iran (3), Italy (3), Japan (19), Korea (1), Kuwait (1), Poland (4), Romania (1), 
Russia (3), South Africa (1), Taiwan (7), Turkey (1), Ukraine (4), and United States (18). 

T. R. Tauchert 
Chair, National Organizing Committee 

* Articles included in the survey were those appearing in Volume 19 of the Journal of Thermal Stresses plus those cited 
in the "Publications on Thermal Stresses" section of the journal. 

A Note from the Principal Organizers of Thermal Stresses "97 

We take this opportunity to tell you, the Participants, that we have enjoyed working on the preparations leading 
to Thermal Stresses "97. After two years of effort we observe with amazement that the various pieces of the big jigsaw 
puzzle are starting to fall into place. Until very recently some of these pieces seemed to not fit well together. Now, with 
only a few weeks before the opening ceremony of Thermal Stresses "97, we are beginning to feel confident that things 
will work out. We hope that you will find our efforts worthwhile. 

We express our thanks to Rochester Institute of Technology for allowing us to have Thermal Stresses "97 on its cam- 
pus. We thank various service departments of RIT for their friendly cooperation, especially the Catering Service, 
Resident Life, and the Physical Plant. 

We express our appreciation to the School of Printing Management and Sciences, and in particular, we thank 
Professors Archibald D. Provan and Barbara Birkett for providing an excellent service for us, and to Keli McCreadie 
and Magda Knaflewska for taking great care in the design and printing of the Program, Proceedings Volume, and other 
materials. 

Last but not least, we thank Mrs. Connie LaBarre, the secretary to Richard B. Hetnarski, for two years of 
dedicated hard work, often after hours and on weekends, on the preparations for Thermal Stresses "97. 

We hope you will enjoy being a part of Thermal Stresses "97. 

(kckcuA 6. HeU c^Az  /v~, /^i^_ 
Richard B. Hetnarski 
General Chair 
James E. Gleason Professor of 

Mechanical Engineering 
Rochester Institute of Technology 
Rochester, NY 14623, U.S.A 

Naotake Noda 
General Chair 
Professor of Mechanical Engineering 
Shizuoka University 
Hamamatsu 432, Japan 

'Hany Ghoneim 
Secretary 
Associate Professor of 

Mechanical Engineering 
Rochester Institute of Technology 
Rochester, NY 14623, U.S.A 



General Chairs Local Organizing Committee 
R. B. Hetnarski (USA) and N. Noda (Japan) Honorary Chairs 

S. D. McKenzie, Provost and Vice President of 

Secretary Academic Affairs, RIT 

H. Ghoneim, Rochester Institute of Technology P. Petersen, Dean of the College of Engineering, RIT 

Chairs 

Advisor General R. Budynas, J. Torok 

B. A. Boley, Columbia University, USA Members 

C. Haines, S. Kandlikar, S. Radziszowski, M. Scanlon, 

International Organizing Committee L. Mikols, Joanne Mason, Mary Webster, Cynthia Gray 

Chairs 

Y. Tanigawa, University of Osaka Prefecture, Japan 

F. Ziegler, Technical University of Vienna, Austria 

Sponsors 
For their generous support, special thanks are extended to: 

Wright Laboratory's 

Members 

J. Zarka, Ecole Poly technique, France 

Right Dynamics Directorate 

Wright Patterson Air Force Base, OH 

G. England, Imperial College, United Kingdom 

J. Ignaczak, Polish Academy of Sciences, Poland 

Z. Mroz, Polish Academy of Sciences, Poland 

Air Force Office of Scientific Research 

Boiling Air Force Base, Washington, DC 

T Hata, Shizuoka University, Japan 

K. Herrmann, University of Paderborn, Germany 

J. Aboudi, Tel-Aviv University, Israel 

United States Air Force 

European Office of Aerospace / Research and Development 

R. Dhaliwal, University of Calgary, Canada 
London, U.K. 

National Organizing Committee 
Chairs 

Department of the Air Force 

Asian Office of Aerospace / Research and Development 

Carl Herakovich, University of Virginia Toyko, Japan 

T. R. Tauchen, University of Kentucky 
♦                                                            *                                                            ♦ 

The contributions of the following institutions are acknowledged: 

Members 
Taylor & Francis, Publishers since 1798, Washington, DC 

G. Dvorak, Rensselaer Polytechnic Institute 

V. Genberg, Eastman Kodak Company 

Local Organizing Committee, Thermal STresses, "95 
Shizuoka University, Hamamatsu, Japan 

G. R. Halford, NASA 

D. Paul, U.S. Air Force Wright Lab 

E. Suhir, Bell Laboratories 

Institute for Mechanics and Materials, 

University of California, San Diego 

Louis Skalny Foundation, Rochester, NY 

Program Committee 
Chairs 

Eastman Kodak Company, Rochester, NY 

Jim Barber, University of Michigan 

Louis G. Hector, Jr., ALCOA 
Gleason Foundation, Rochester, NY 

Members 

K. Kokini, Purdue University 

K. Tamma, University of Minnesota 

U.S. Civilian Research & Development Foundation (CRDF) 

Arlington, VA 

L. Librescu, Virginia Polytech. Ins. & State University The Kosciuszko Foundation, New York, NY 
Promoting Educational and Cultural Exchanges and Relations between the United States and 

Poland since 1925 



Richard B. Hetnarski and Naotake Noda, General Chairs, 

on behalf of the 

International and National Organizing Committees 

express thanks to 

Dr. Albert J. Simone, 
President of Rochester Institute of Technology, 

for the support and interest shown to Thermal Stresses v97. 

Special thanks are directed to 

Dr. Stanley D. McKenzie, 
Provost and Vice President for Academic Affairs, 

Rochester Institute of Technology, 

for the enthusiam and assistance shown for the 

organizational effort of Thermal Stresses v97. 



Thermal Stresses 97 

Principal Lectures 

Chairs: 

Z. Sobotka 

R.B. Hetnarski 

N. Noda 



Thermomechanics of Heterogeneous Media 
George J. Dvorak 

Modeling of Thermal Cracking in Elastic and 
Elastoplastic Solids 
K. P. Herrmann 

Thermal Stress-Focusing Effect Following Rapid 
Uniform Heating of Spheres and Long Cylindrical Rods 
Toshiaki Hata 



THERMOMECHANICS OF HETEROGENEOUS MEDIA 

George J.DVORAK 
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Department of Mechanical Engineering, Aeronautical Engineering 
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Rensselaer Polytechnic Institute, Troy, NY 12180 
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1. Introduction 

This lecture will survey some recently developed 
micromechanical modeling methods and certain 
results concerning the overall thermomechanical 
response, average local fields and heat conductivity of 
bom elastic and inelastic composite materials, with 
either constant or variable volume fractions, and with 
extensions to polycrystals and laminated plates. 

2. Thennoelastic composites and polycrystals 

Initial connections between mechanical and thermal 
responses of heterogeneous media were established in 
the 1960s, primarily by Levin, who evaluated the 
overall strain due to a uniform change of temperature 
in a statistically homogeneous multiphase aggregate in 
terms of the overall and local elastic moduli, and 
thermal expansion coefficients and volume fractions of 
the phases. More recently, many other connections 
have been identified between the effects of mechanical 
loading and thermal changes in composite materials 
and laminates. Several such results were found using 
the method of uniform fields in heterogeneous media, 
which provides a class of exact solutions for local 
fields caused by certain overall loads and local 
eigenstrains. Superpositions of the uniform fields with 
those caused by other loading states offer interesting 
insights into the effect of thermal changes on the 
response of materials with complex microstructural 
geometry. For example, we will show that the local 
stress and strain fields due to a uniform change in 
temperature in a representative volume of a two-phase 
composite material can be related by exact 
connections to the respective fields caused by uniform 
mechanical loading. In certain multi-phase materials, 
such connections can be obtained for the averages of 
the thermal and mechanical fields. Another example 
win illustrate connections between thermal expansion 
and compliance coefficients of selected polycrystals, 
both in bonded and partially debonded configurations. 

3. Elastic-plastic fibrous composites and laminates 

Evaluation of the inelastic response of both metals and 
metal matrix composites and laminates relies, in part, 
on information about the initial yield surfaces and their 
motion in stress space during plastic loading. In 
heterogeneous solids, the overall yield surfaces are 
typically constructed using the local stresses and yield 
surfaces of the inelastic phases. Therefore, changes in 
the local fields induced by temperature variations may 
cause thermal hardening effects even in the absence of 
any local inelastic deformation. For fibrous metal 
matrix composites, the method of uniform fields 
predicts rigid body translation of the overall yield 
surface in stress space. Also, inelastic deformation of 
fibrous systems along a combined thermomechanical 
loading path is exactly simulated by purely mechanical 
loading along an equivalent path, in superposition with 
uniform local fields. This simplifies solution 
procedures and illuminates coupling between thermal 
and mechanical deformations in the fibrous systems. 

4. Functionally graded materials 

Thermomechanical modeling of composite materials 
with composition gradients often calls for solution of 
both heat conduction and thermoelasticity problems. 
Exclusive use of discrete models of the micro- 
structure is not practical, hence homogenized models 
are required, such that provide accurate estimates of 
both the variable heat conductivities and thermoelastic 
moduli. Frequent concern is with nonlocal effects 
created by interactions of property and field gradients. 
Results of numerous comparative studies of local 
fields and overall response of both discrete and 
homogenized micromechanical models suggest that 
appropriate combinations of standard averaging 
techniques, which reflect the local microstructural 
arrangement, provide accurate homogenization 
procedures for graded material systems. The nonlocal 
effects are found to be significant only if local field 
gradients are large and field averages small, and may 
thus be neglected in most applications. 





Modeling of thermal cracking in elastic and elastoplastic solids 

K.P. Herrmann*). M. Dong**), and T. Hauck***) 
*) 

*** 

Professor, Mechanical Engineering Department, University of Paderborn, 
Pohlweg 47-49, D-33098 Paderborn, Germany 
Dr.-Ing., Staatliche Materialprüfungsanstalt, University of Stuttgart, 
Pfafienwaldrmg 32, D-70569 Stuttgart, Germany 
Dipl.-Ing., Motorola GmbH, Geschäftsbereich Halbleiter, AISL Europe, 
Schatzbogen 7,81829 München 

Key Words: Thermoelasticity, Thermcplastichy, Thermal 

1. Introduction 

The study of thermal crack growth in multiphase 
material* is necessary tor the assessment of die 
strength of composite structures because modem 
composite materials are often subjected to variable 
temperature fields. Furthermore, there exists experi- 
mental evidence tor the appearance of different failure 
mechanisms in thermally loaded compounds, like cur- 
vilinear matrix and interface cracks, respectively, 
where these thermal cracks arise mostly under mixed- 
mode loading conditions, in this paper, a review is 
given about the fracture mechanical investigation of 
the thermal crack initiation and propagation in one of 
the segments or in the material interface of two- and 
three- dimensional self-stressed bimaterial structures. 

2. Crack Path Prediction 

The resulting boundary value problems of the sta- 
tionary thermoelasticity and thermoplasticity tor the 
cracked 2-D and 3-D two-phase compounds are sol- 
ved by means of die finite element method. Moreover, 
by applying an appropriate crack growth criterion 
based on the numerical calculation of die total energy 
release rate of a quasistatic mixed-mode crack exten- 
sion the further development of thermal crack paths 
starting at the intersection line of the material inter- 
face with the external stress-free surface of the 2-D 
and 3-D elastic bimaterials could be predicted. In case 
of die disk- like two-phase compounds die theo- 
retically predicted crack paths show a very good 
agreement with results gamed by associated cooling 
experiments. Several specimen geometries consisting 
of different material combinations and subjected to 
uniform as well as to non-uniform temperature distri- 
butions have been investigated by applying the rele- 
vant methods of fracture mechanics. As an important 
result could be stated that thermal cracks propagating 
in one segment of an elastic bimaterial only obey the 
rule GJJ = 0, wheras for interface cracks a mixed- 

mode propagation is always existent where the Gn- 
values play an important role. Moreover, by applying 
the proposed crack growth criterion the possible crack 

Cracks, Dissimilar Material, Fracture Mechanical Parameters 
kinking direction &' of an interface crack tip out of 
the interface could be predicted under the conside- 
ration of the finite thickness of an interlayer 
(mterphase).Furthermore, the influences of three- 
dimensional effects on die thermal crack propagation 
in axialsymmetric two-phase composite structures 
have been studied by means of this crack growth crite- 
rion as well as by using the finite element method. The 
numerical results show some remarkable differences 
between 2-D and 3-D bimaterials concerning die 
thermal crack paths as well as the associated fracture 
mechanical parameters. 

3. Local J-integral 

Finally, an analysis of the stress and strain fields 
in the vicinity of thermal interface cracks in the dis- 
continuity area of 2-D and 3-D elastoplastic two- 
phase compounds has been performed by using the 

FE-method. Moreover, a heat source ß(x.) vns 

assumed in one of the two materials in the neighbor- 
hood of an interface crack tip. The resulting initial- 
boundary value problem of the instationary heat con- 
duction equation has been solved by using the FE- 
method and under consideration of an appropriate 
semidiscretization procedure as well as by applying a 
Newtonian boundary condition for the heat transition 
from die specimen to the environment (temperature 
T0) and an insulation condition concerning die inter- 
face crack surfaces. Furthermore, die corresponding 
stress states in the two-phase compounds and espe- 
cially in the vicinity of an interface crack tip have 
been calculated by applying the incremental J2 -pla- 
sticity as well as by using a bilinear hardening 
material law. Thereby the calculation of the stress 
states is based on a so-called sequentially coupled 
solution of the heat transfer and the thermal stress 
boundary value problem. The assessment in terms of 
failure is performed on die basis of the local J-integral 
which, for three-dimensional interface cracks, has 
recently been generalized by Herrmann and Hauck 
(1995) following the earlier work by Moran, Shin and 
Nakamura (1986,1987) and Nfldshkov and Aduri 
(1987). 





Thermal Stress-Focusing Effect Following Rapid Uniform 
Heating of Spheres and Long Cylindrical Rods 

Toshiaki Hata* 

*Faculty of Education, Shizuoka University, Shizuoka City, Shizuoka 422, JAPAN 

Key Words-. Thermoelastidty, Stress Waves, Thermal Shock, Cylinders, Spheres, Stress-Focusing, 
Ray Theory 

1. Introduction 

Stress waves, that develop following rapid uniform 
heating of linear-elastic spheres and long cylindrical 
rods, display a stress-focusing effect as they proceed 
radially towards the center in these geometries. The 
stress-focusing effect is the phenomenon that, under a 
rapid uniform heating, stress waves reflected from the 
free surface of the sphere or the cylindrical rod result 
in very high stresses at the center, even though the 
initial thermal stress should be relatively small. This 
phenomenon may be observed in the solid spheres 
subjected to the spherical symmetric heating and in 
the cylindrical rods subjected to the cylindrical sym- 
metric heating. 

The phenomenon of stress-focusing effect in a long 
cylindrical rod subjected to a sudden rise in tempera- 
ture uniformly over its cross-section has been studied 
by Ho in 1976. 

Consider a long cylindrical rod subjected to a sud- 
den rise in temperature uniformly over its cross sec- 
tion. This type of temperature distribution may be 
developed by the absorption of infrared rays radiation 
or electromagnetic radiant energy from pulses that 
are typically of duration much less than 1 microsec- 
ond. Because the material is inertially restrained, 
the rapid heating results initially in a constrained 
thermal expansion and/or induced compressive ther- 
moelastic stress in the rod. As the particles of the 
material begin to move, stress waves are created and 
propagate through the rod. Waves reflected from the 
cylindrical surface of the rod may accumulate at the 
center. 

If the interest of the problem is in the maximum de- 
veloped stresses due to the rapid heating of the rod, 
then the solution needs to be determined only for 
short elapsed time after the termination of heating; 
i.e., a time duration which is of the order b/c, where 
b and c are the radius of the rod and the elastic wave 
speed, respectively. For most materials, thermal dif- 
fusion time is much longer than b/c and so thermal 
conductivity can be neglected. 

2.Subjects to be treated 

This paper reviews recent extensions of the ana- 
lytical methods for the problem of thermal shock in 
spheres and cylindrical rods, especially for the prob- 
lem of thermal stress-focusing effect in spheres and 
cylindrical rods. 

First, considering the problem of thermal shock in 
a hollow sphere subjected to the rapid uniform heat- 
ing, if the ratio of the outer radius to the inner radius 
of the sphere increases, the peak tangential stress at 
the internal surface becomes higher and higher.. As 
a limit case, for a solid sphere, it might be possible 
to observe the stress-focusing effect. Next, as for the 
analysis of a cylindrical rod due to the rapid uniform 
heating, stress waves also show the stress-focusing ef- 
fect. 

As for the analytical methods, the solutions are 
carried out by using Laplace transform on time. The 
inversion of Laplace transform is carried out by using 
the ray integrals in the case of the sphere, while by 
using the ray series in the case of the cylindrical rod. 
By using these methods, we show that the compli- 
cated Laplace transformed solutions of the problem 
lead to simple solutions. 

Following the ray methods, we could obtain math- 
ematically the order of singularity of the stresses in 
a cylindrical rod and a sphere subjected to the ramp 
heating, which is 0(p~2) for the cylindrical rod and 
0(/?~3) for the sphere. Furthermore, in order to clar- 
ify the strength of the stress-focusing effect, the stress 
focusing intensity factors can be defined. 

As stated in the paper, many problems come out 
from the thermal stress-focusing effect. In the future 
the interaction between the cracks and the stress- 
focusing effect in a solid should be considered in the 
fracture mechanics. 

Hence, the major accomplishment of this study 
is in gaining a better understanding of the thermal 
stress-focusing effect in the solid spheres, the cylin- 
drical rods, and other geometries. 
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Thermomechanical Effects due to Rolling Contact on an Interface Crack Growth 
in a surface Layered Material 

T. Goshima* ,  T. Nishino* and T. Koizumi** 

* Faculty of Engineering, Tcyama University, 3190, Gofuku, Toyama 930, JAPAN 
** Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112, JAPAN 

The two-dimensional interface crack problem in a surface coating layered material is considered 
under rolling/sliding contact with frictional heat generation. The interface crack is replaced by the 
distributed edge dislocations. The numerical results are given for some tribological material coatings 
on a steel substrate. The effects of the frictional coefficient, slide/roll ratio, the coating thickness and 
the crack length upon the stress intensity factors are considered numerically. 

Key words: Elasticity, Thermal Stresses, Contact Problem, Coating Layered Material, Interface Crack 

1. Introduction 

The surface coating composite materials are more 
and more used to improve the mechanical and tribo- 
logical behavior of surfaces in the industries. In most 
cases, rolling contacts are accompanied by frictional 
heat generation. Thermomechanical cracking can occur 
on the interface when they are subjected to the rolling 
/sliding contact In recent years, a considerable effort 
has been devoted to thermomechanical contact problem 
in the various layered materials [l]-[2]. Most of Ihese 
studies are not involved in the crack analysis. Therefore, 
one of the authors has delt with a crack problem in a 
surface layered medium due to rolling contact [3]. 
However, this study do not involve in the interface 
crack analysis. In order to gain a better understanding 
for the conditions of fracture with debonding in layered 
materials due to rolling contact, the tribological and 
thermal effects due to rolling contact on the interface 
crack growth must be considered. 

In this article, the two-dimensional interface crack 
problem in a surface coating layered material is 
considered under rolling/sliding contact with frictional 
heat generation. Attention here is focused on the stress 
intensity factors at the crack tips which provide the 
measure for quantifying the magnitude of crack growth. 
In this analysis, the crack is replaced by the distributed 
edge dislocations, and it is assumed that the crack face 
friction is neglected and that the temperature field is not 
disturbed by the crack with a large Peclet number. The 
problem is reduced to a pair of singular integral 
equations for dislocation densities. The singular 
integral equations can be solved numerically by 
considering the nature of the oscillatory singularities at 
the crack tips. The numerical results of the stress 
intensity factors are given for some tribological 
material coatings on a steel substrate. The effects of the 
frictional coefficient, slide/roll ratio, the coating 
thickness and the crack length upon the stress intensity 
factors are considered numerically. 

2. Problem Formulation 

Figure 1 shows the geometry and coordinate 
system for this study. The layered half-space is loaded 
by an arbitrarily distributed contact pressure P^) 
and tangential frictional load fP^x,) in the contact 
region. Where f is frictional coefficient. Then, the 
frictional heat generation Qi(*i) is given as follows: 

Q1(x1)=fVsP1(x1) (i) 

Here Vs is Ihe sliding velocity during rolling contact. 
In   the    analysis   the   following    dimensionless 
quantities are used. 
(x,y)=(x/c, Y/C), (x1,y1)=(x1/c, ^/c), E.=cV/i, 

Sr=Vs/V, h=h/c, l='l/c, e=e/c, K-Kj/K,, 

0=^/0,, P(x> P^/Po,   K. =3-4v. 

C0=2G2(1-CL)/{(K. + 1X1-P)} 
V-) 

where a,- is thermal diffusivity, K= is thermal 
conductivity, G: is shear modulus,vj is the poisson 's 
ratio, R: is the Peclet number, Sr is the slide/roll 
ratio, P0 is the maximum contact pressure and a, ß 
are the Dundurs parameters [4]. The subscript j=l, 2 
denote the coated and substrate regions respectively. 

heat-general ion 

Q,<X,) 

Y Y, 
Fig.l   Problem configulation and coordinate system 
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The non-contact region is assumed to be thermally 
insulated, and the crack face friction is assumed to be 
negrected. Then, the thermal and mechanical boundary 
conditions can be given as: 

££> -fVS.cPoP^VKj ,  |Xl|gl,y1=0 

*ay, M    o . W>i,y1=o 
3T<0 dlV 

(3) 

= K-^,  y]=h    ;fW>y,=h (4); (5) 

(6) 

(7) 

(8) 

(9); (10) 

ay,       ay, 

T^O,  x* +y*   -oo 

oO)=/   -poP(xi),    |xj£l, y1=0 
»    t      0 ,    |x,|>l , y1=0 

oV=l  -fPoP(Xi),    |xjgl,y1=0 
*   *   ° .   W>i,yi=o 

c^^o025, v -h •     o^-o®   v =h 
W       jy »   *1    "   >        uxy     uxy '   Vl    n 

<)=u®' vi-h>-    «£-«£. y,-h    (ii);(i2) 

cr^-O, (p,q=x,y),   x2+y2-oo (13) 

cr=0,    y=0,   -Uxsl (on the crack face) (14) 

0^=0,    y=0,   xex^     (on the crack face) (15) 

nw=ujy' y=0'   X€Xa      (on the crack face) (16) 

where xop and x^ are the crack face opening and closing 
region, respectively. 

3. Stress Analysis 

Applying the Fourier transform to the quasi- 
stationary heat euuation, the temperature solutions in 
the transformed space, which satisfies the boundary 
conditions Eqs.(3>(6), can be obtained as follows [3]. 

l^=fcVSrP0P^)Fö)(s)/Ds    (,'=1,2) (i7) 

F»(s)= cosh(h-y1>1+ Ks^sinhQi-y^ 

F^(s)= expfh-y^ ,   s12=Sl/s2,   s.=(s2+ i s R.)1'2 

Ds= s1sinh(hs1)+Ks2cosh(hs3)    , im/IT 

where, s is the complex transform parameter. 
The stress field <$ in the cracked layered half-space 

subjected to the rolling-sliding contact is represented by 
superposition as follows. 

Q»-o£»+oJ0> (p,q=XjyX 0-1,2)     (ig) 

Here, o£® denote the thermal stresses in an uncracked 
layered half-space subjected to the rolling-sliding 
contact. The stresses <£,° denote the disturbance 
induced by the  crack. 

The thermal stresses in the Fourier transformed 
space due to the temperature field Eq.(17) are shown as: 

oj» l(2G)= - s2 tf - s2y, $? - 2 Vj ♦? ' - Q® " 

c$® /(2Gjj)- <)>® "+ y, & "- 2(l-VjH?'+ s2Q® - 

<» /(2G)=-is{ $ '+ y,^"'-(l-2vj)"^'+si Q® '} 

(19) 
where prims denote the differentiation with respect 

to ya. The stress functions and the thermoelastic 
potential in the transformed space are given as : 

♦© = CfexpC-sy,) + (2-j)Df exp(syi) (20) 

Q<D . V")^   TO)     (r=0,3;j=l,2) (21) 
(l-v^sRj 

By applying the boundary conditions (7>(12), the six 
coefficients Cr0) , ty© can be solved from six 
algebraic equations. Consequently, the thermal 
stresses in an uncracked layered media, which satisfy 
the boundary conditions (7>(13), are obtained by 
applying the inverse Fourier transform as 

C= -j= I ~C expHsx^ds (22) 

To account for the disturbance °PI by the crack, 
we consider the problem of a discrete edge dislocation 
bx, by being at the interface (x= n) as shown in 

Fig.2. The induced stress field o*V) and «£Vy) 
due to bx and by , can be easily obtained. For 

example, the stresses at the interface are shown as: 

<%%,»)• 
C„b_ 

ji(x-n) 

C„b.. 

, c£G>(x,0)=-ßC0b,Ö(x-T,) (23) 

o»o>(x,0)=—^-, 0^(x,O)=ßCoby5(x-T,)    (24) 
3t(x-T1) 

x<- x  <r 

Fig.2. Geometry for the glid and climb dislocations 
(b* and by) located at the interface 

In order to remove the surface tractions and satisfy 
the   boundary   conditions   Eqs.(9><13),   additional 

stresses  o*°   must be considered. The stresses 0
A(i> 

PI 

can be obtained in the same manner as Eqs.(19)-(20) 

with ß =0. The unknown constants being equivalent 

to cf, D® in Eq(20) can be determined by solving 

algebraic equations to meet the boundary conditions 

Eqs.(9>(13) and «£» = «£» - 0 on the surface (y=0). 
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Replacing bx and by by distributed dislocation 
density bx( 7? )d 77 and by( 77 )d?7 defined along the line of 
the crack, the stresses induced by the crack can be 
obtained by integration of 77 as follows. 

«ff-/{tfWo^ + O*, (29) 

Substituting Eqs.(22), (29) into Eq.(18) and the 
crack face boundary conditions Eqs.(14), (15), the 
following singular integral equationa are obtained. 

ß-FB>«+ ZF / — *l + jB,(r1)r](x,r1)dr1 3tG 1 .1 x-n 

+ /By(T1)r2(x,T,)(br 

-1 

»y -JiXSl 
0   Jy=0 (30) 

-ß-fBx(*)+ -i- J Msid,, + jB,(T))r3<x,T,)dn 
G, "G,   _,    X-T, _, 

I 

+ /B^(n)r4(x,T|)dri- 
-7 

yy 

y=0 (31) 

where Bx( 7?) = G^ /P0,   By( 77) = Gjby /P0   and the 
kernels r 1, r 2, r 3 , r 4 arethe functions of x and 77. 
We must require in addition that the total Burgers 
vectors of the dislocations vanish, or that 

1 1 

/Bi(x)dx = 0, -lixil (32);   fBy(x)dx=0, xex^ (33) 
.1 -1 

as the conditions ensure that the displacements are 
single-valued. 

4. Stress Intensity Factors 

Replacing 77 [-U ] by f [-1, 1] <?=*//), 
Bj^ 77) andBy( 77) are written as 

[B,©, B,(0 ] =       [S'^'g^)3  s (34) 
(l-5)Y(l+5)6 

Y-| + * o,   6-1 - / <o,  »-^log (i±i )      (35) 

Substituting Eq.(34) into Eqs.(30>(33) and using the 
technique developed by Miller and Keer [5], the integral 
equations Eqs.(30)-(33) reduce to the simultaneous 
linear algebraic equations for gx and gy. In solving these 
equations, the region x^ or xd are determined by the 
iteration method under the condition of the absence of 
overlap of the materials at the interface. The boundary 
condition Eq.(16) can be satisfied by setting gy=0 for 
the portion of x e xc]. 

Defining the stress intensity factors by [6], Kj and 
Kn can be numerically determined as follows. 

At the crack tip A, 

[K., *n]- P0 
CoVc((l-ß2) [gy(-l), «-!)] /G, 

At the crack tip B, 
(36) 

[K.. Kn]= p. C0 Vc/(l-ßJ)  [g,(l) , -£,(1) ] /G,   (37) 

5. Numerical Calculations 

Numerical results were carried out for the case 
of some tribological material coatings on a steel 
substrate as Table 1. Contact pressure Pfo) was 
assumed to have a Parabolic distribution. 

Table 1. Material properties 
Layer (j=l) Substrate(j=2) 

Ay?, SiC Si,N4 StelBem Carbon steel 

Gj (GPa) 1S8.S 14Z0 117.6 93.4 80.0 

"> 0.23 0.127 0.25 0.285 0.3 

K,(W/mK) 20.73 104.4 21.0 9.7 36.053 

Kj (un&/s) 4.99 49.0 0.98 2.77 9.72 

«j (*KJ ) 7.19 5.01 2.6 11.3 10.0 

B (X10-3) -59.27 7.648 -25.49 -12.81 

As the numerical results of stress intensity 
factors at the crack tip A were always larger than 
those at the crack tip B and Ki was very small 
compared to Kj, we show only the results of Kn at 
the crack tip A. In Figs.3, 4 , the results of AI2O3 
coating are plotted as functions of the crack location 
over a complete loading cycle showing the fiictional 
and thermal (side/roll ratio) effects respectively. 

A1203 
2/=0.1 
h=0.1 
Sr=0.1 

Kn/(P0/"c) 
 f=0.0 
-- f=0.1 
- - - - f=0.3 
— f=0.7 

efci) 

-0.02 L 

Fig.3   KJJ as a function of e showing effects of f 

A1203 •Kn/(Po/'c) 
2MU  Sr=0.0 
h=0.1 \02 - - Sr=0.1 
f=0.1       1 \ - - - - Sr=0.3 

\\ L          sr=0.7 

1.01^ 

-1 

-0.01 

-0.02 

-    W 

Fig.4   Kn as a function of e showing effects of Sr 
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The effects of factional coefficient, slide/roll ratio, 
coating materials, layer thickness and crack length on 
the AKn KKjiW - (K^ ^ are shown in Figs.5-8. 

AKD/(P0V"c) 
0.12 

0.08 

0.5 

0.4 - 
AKn/(P0V"c) 

0.02 

h=0.4 
1               ' 

.   h=0.2 

•*      - 
s ^ 

r~-~ ~" "" 

h=0.l 

^ 

■ 

2M>1 
Si=0.l 

 Al A     ■ 
--SiC 
 Stellilem 
• • - • Si.N, 

 —1 ■—I ■ 1 1  

h=0.4 

0.1 - — — 

0.0? •   h=0.2                    _ - - " " 

0.06 • 

0.04 
MI-'-——^^^^■'-'" " 

0.02 
f-0.1,2/=0.l 

V                                   AljO,     - 
 SiC 
 Slelltlem 
 Si,H, 

 ...  i      .i.i. 

•3- 0.3 

0.1 - 

 1 1 1— 
A1203 

.Crack tip A 

— 1 ■ ■"-' T "  

f=0.3- 

f0.7l^- 
 h=0.5 

■    Sr=0.1 s'J:             f=o.i' 
/ '/^tO.l        ; 

h=0.5    /   / 

'  v /, 
f     /   / 

'    //J/S'— 

S                        1=0.3 

-^           «to, ' 

/^^h=0.1 

i i.t. 

0.2 0.4      .    0.6 u I 2 

Fig.5  A % as a function of frictional coefficient f 
and slide/roll ratioSrfor various layer thickness 

3  Sr   4 

0.12 

0.2 

AlsCs (f=0.1,S,=0.1) 

 AI2Cs (f=0.7, S,=0.1) 

-AISCs (f=0.1, S,=0.7). 

-AljC3(«=0.1,S,=4.0) 

-SiC(f=0.1,S,=0.1) 

-St3N,(f=0.1,S,=0.1)- 
-Stellite HI 

(f=0.1rS,=0.1) 
''■'■ 

0.4 0.6 0.8 

Fig.6  A Kn as a function of layer thickness 

0.3 

^    0.2 

<! 

0.1 

-I—|—i—r -r—r-i—r—r—r- 

Al20b 

Fig.7   A Kn as a function of 2/ showing effects of Sr 

0 0.5 1 1.5 2 
2/ 

Fig.8 A Kn as a function of 27 showing effects of f 

6. Conclusions 

This work has analyzed the stress intensity 
factors Kn and AKn for an interface crack in a 
surface layer bonded to a half-space under rolling- 
sliding contact 1 oading. From numerical examples for 
some tribological material layers bonded to a steel 
substrate, thermomechanical effects on an interface 
crack growth were investigated When f and Sr take 
small values, the value of AKJJ for Al2p3 layer is 
larger than that for other material layers. As f and Sr 
increase, A Kn for SiC layer has the most remarkable 
thermomechanical effect. In the present numerical 
examples, the greatest value of AKn occurs when 
h=0.4~0.6. As the crack length increases,the values 
of A Kn increase. When f and Sr take small values, 
the increasing rate of AKn decrease with an increase 
of crack length. However, especially for the case of 
thin layer, the increasing rate of AKjj is influenced 
significantly by the slide/roll ratio and frictional 
coefficient (thermomechanical effects). 
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Thermal Plastic Zone Size In An Infinite Solid With An External 
Axially Symmetric Crack 

Janice S. Pawloski and Yu-Min Tsai 

Department of Aerospace Engineering and Engineering Mechanics, Iowa State University 
Ames, IA 50011, USA 

In this paper, an integral transform method is employed in order to determine the solution of 
the axially symmetric steady-state problem of an infinite linearly elastic, perfectly plastic solid with 
an external annular crack opened by an applied temperature over the crack surface. This problem is 
symmetric with respect to the plane of the crack. The Dugdale hypothesis is used to define the 
plastic zone. Two cases for the location of the plastic zone will be considered. The size of the plastic 
zone is determined by eliminating the singular stress at the beginning of the region of plastic 
behavior. The results for both cases are compared. 

Key Words: Fracture, Thermal Stresses, Integral Transforms, Plastic Zone 

1. Introduction 

The problem of determining the axially 
symmetric thermal stress distribution in infinite 
bodies with annular cracks has been considered in 
several papers. The symmetric problem for a brittle 
material caused by applying a temperature to the 
crack surfaces is presented by DasW. The anti- 
symmetric problem resulting from an applied heat 
flux on the crack surface is presented by Kassir(2). 
The second paper also uses the hypothesis of 
DugdaleP) in determining the size of the plastic zone 
about the crack tip for an elastic-plastic material. 

In this paper, an integral transform solution is 
employed to determine the temperature distribution, 
the normal stresses in the plane of the crack, and the 
displacement of the crack surface for an infinite elas- 
tic-plastic solid with an external crack opened by an 
applied temperature on the crack surface. Dugdale's 
hypothesis will also be used to determine the size of 
the plastic zone at the crack tip. It is assumed that a 
constant uniform tensile yield stress acts over an 
annular band near the crack tip. The singular stress 
at the beginning of the plastic region, and therefore 
the stress intensity factor, is in this case equal to zero. 

2. Definition Of The Problem 

Consider an infinite, isotropic elastic-plastic 
body containing a flat external crack. Cylindrical 
coordinates are used to describe the problem. Let r 
and 2 be the variables in the plane of the crack and 
perpendicular to the crack, respectively. The origin 
of this coordinate system lies in the plane of the crack 

and at the centroid of the uncracked portion. Let ds 

be the radial distance from the origin to the start of 
the plastic zone, dT be the distance from the origin to 
the physical crack tip, and dp be the distance from 
the origin to the end of the plastic zone. Two 
different cases will be considered: 

Case One: The plastic zone starts at the physi- 
cal crack tip, and extends over the crack surface. In 
this case, ds=dT<dP. This is the same assumption 
used in the solution presented by KassrK2). 

Case Two: The plastic zone exists over the 
uncracked portion of die solid, and ends at the 
physical crack tip. In this case, ds<dT=dP. 

Both mechanical and thermal loads are allowed 
to act along the crack surface. The conditions are 
symmetric with respect to the plane of the crack, so 
only the semi-infinite body, z > 0, will be considered. 
In addition, only conditions which are axially sym- 
metric will be imposed, therefore variations with the 
angular coordinate 6 can be neglected. 

The temperature change from the stress-free 
state will be denoted by T(r£). The displacement 
vector fi(r,z) has components ur, ue, and uz. The 
non-zero components of the stress tensor a(r^) are 
Orr, cjgg, as, and cr^. The symmetry of the tem- 
perature and stresses with respect to z = 0 gives rise to 
the following boundary conditions: 

dT(rfi) = 0, 0<r<dT (1) 
& 

u,(r,0) = 0, 0<r<ds^     (2) 

o„{rJB) = 0, r>0. (3) 
In addition, the crack face is subjected to a tempera- 
ture and pressure distribution: 

T(r,0) = T0g(r), r>di,       (4) 

Gs(r,0) = -p(r), r>d* (5) 
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3. The Heat Conduction Problem 

In the linear theory of thermoelasticity, the 
temperature field can be determined independent of 
the stresses and displacements. For a steady-state 
conduction problem with no internal heat generation, 
the governing differential equation is simply 
Laplace's equation. The method of integral trans- 
forms leads to a general solution to this differential 
equation of the form 

V20> = ß7\ (15) 

(6) 

Application of the boundary conditions found in 
Equations (1) and (4) leads to the following set of 
dual integral equations: 

00 

\%A{l)J0(i,r)d% = 0,     0<r<dT,     (7) 
0 

CO 

\A(%)JQ(&)d% = TQg(r),     r>dT.        (8) 
o 

Equation (7) is identically satisfied if A(&) has the 
form 

A{%) = \x(t)sm{%t)dt. (9) 

Equation (8) can then be solved for the unknown 
function x(t): 

where 
jt  at 

G(0 = "fbSto*. 

(10) 

(11) 

Once x(0 has been determined, the temperature 
at any point can be found. In particular, in the plane 
of the crack over the uncracked portion, 

Tt nx 2T° ?      1      dG(t) . (r')=-~L^~dt'r<dT-(12) 

4. The Thermoelastic Problem 

Once the temperature is known, the displace- 
ment field can be determined. The displacements are 
related to the change in temperature through the 
tensor expression 

div(gradfi)+1=L_grad(divü) = ^^.gradr, (13) 

where a is the coefficient of thermal expansion and v 
is Poisson's ratio. It is convenient to assume a dis- 
placement vector of the form 

G = gradO+Ü!, (14) 
where <J> is called the thermoelastic displacement 
potential. Substituting Equation (14) into Equation 
(11) yields the decoupled set of equations: 

where ß = -i^-a, and 
l-v 

div(gradü,)+1^rgrad(divüi) = 0.      (16) 

A solution to Poisson's equation (15) gives an 
expression for the thermoelastic potential: 

*M = -fjr2^)(i+^/0(^.(i7) 
z o 

A solution of the homogeneous equation (16) yields 
the following Airy stress function which satisfies the 
boundary condition of Equation (3): 

CO 

%(r,z) = -2^r3Cß)(2v + ^)e-^/0(^.  (18) 

o 
The non-zero displacements can be written in terms 
of these two functions: 

d®     1   &x 
ur{r,z) = 

dr    2\x, drdz ' 

"•<-> - f *i{*-^-% 
(19) 

(20) 

The stress tensor can be found from the 
constitutive relation 

CT = 2u1^r(divfi-^ar)l+2us, (21) 
where \x. is the shear modulus, I is the unit tensor, and 
£ is the strain tensor, which is defined as the 
symmetric part of grad ü. 

The dual integral equations for the thermoelas- 
tic problem are obtained by applying the boundary 
conditions of Equations (2) and (5): 

CO   j 

j jC(g)J0 &)d% = 0,     0 < r <ds,    (22) 
o * 

f Jj*<ÖJo(§r)d? +]c(%)J0^r)a% 

2n 
p(r),     r>ds (23) 

Equation (22) is identically satisfied if C(|) has the 
form 

where 

C(9 = §jF(/)cos(§r)Ä, (24) 

limF(r) = 0. 
r-»co 

(25) 

Substituting Equations (9) and (24) into Equation 
(23) yields 

Q    CO CO 

^l<t)jJ0(Er)änat)aldt 
■*■ dT        0 

CO CO 

- \F'{t)\j0{lr)sinmdzdt 

= 2iT*r)- r>d* (26) 
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Equation (26) can be solved for the function F(t). 
Assuming that crack-tip blunting occurs at 

r = dP, and that the crack tip opening displacement 
is equal to u(dp), consider the displacement of the 
crack outside the plastic zone. In terms of the 
function F(t), the displacement is 

,      , r F(t)dt 
u2(r,0)=2(l-v)j-[±!=j,     r>dp.    (27) 

The normal stress in the plane of the crack can also 
be expressed in terms of F(t): 

tF(t)dt 
as(r,0) = 2nJ 

(M 3/2 -foT(r,0),r<ds.  (28) 

5. Solution Of Case One 

If it is assumed that the physical crack tip 
coincides with the start of the plastic zone (dT=ds), 
then Equation (26) can be written as 

= = r-Pir),   r>ds. (29) 
,2       2n 

\g(r)-\F'(t) 
F1 

Assuming perfectly plastic behavior after yielding, 
uniform tension c0 exists throughout the plastic 
region. Let dp locate the end of the plastic region, 
suchthat 

p(r) = -c0H(dP-r),        r>ds       (30) 
where H(dp -r) is the Heaviside, or unit step, 
function. Using this assumption, equation (29) can 
be solved for F(t): 

F(t) = -^d2-t2H(dP-t)-$-G(t),t>ds.(31) 
par TE 

For plastic deformation, the stress is nc-where 
singular. Therefore, the stress intensity factor at the 
start of the plastic region should be zero. Assuming 
the location of the physical crack tip is known, the 
resulting equation can be solved for dp, the end of 
the plastic region. The plastic zone width, non- 
dimensionalized with respect to the distance to the 
end of the plastic region, is given as 

o, = 
dp-d* 

= 1- 1+ - 
yG(ds) 

-1/2 

(32) 

where y =PILT0/G0 . Define the following terms: 

t?2(r,0) = (33) 

and 
(1-V)CT0    dP 

where K and F are elliptic integrals of the first kind, 
E is an elliptic integral of the second kind, and 
a^s sm~l(ds/dP). The crack displacement can be 

expressed as 

vn 2 L Y   f G{t)dt ] 

*P d. ■J^Y 
r>dp.      (35) 

The normal stress in the plane of the crack reduces to 

<yV(r,0) 2  . _, 
= —sm 

71 

-yG(ds) 

{yl4^) 
r<ds. (36) 

6. Solution Of Case Two 

If the assumption is made that the plastic zone 
ends at the physical crack tip (dT = dP), Equation 
(26) can be written as 

ß 

HL 
2 

dt 

t2-r2 
-JF'(t) 

dt 

4^r = £*»• 
ds<r<dp, (37) 

g(r)-JF'(t) 
dt 1 

f2 = —p(r),r>dp.Q%) 

Let the prescribed stress assume the form given in 
Equation (30). Equations (37) and (38) then become 

F(t) = -^d2-t2 -$-G(dP) ,    ds<t<dP,Q9) 
\ai n 

ß, F(t) = -^G(t), 
n 

t>dP.    (40) 

Setting the stress intensity factor at the start of 
the plastic zone to zero, the width of the plastic zone, 
non-dimensionalized with respect to the distance to 
the end of the plastic region, is given as 

,2 

The crack displacement can be expressed as 

5f >(r,0) =| \u0(r)-?-(a.p-as)G(dP) 

(41) 

-—I 
r G(t)dt I 

*>lj£jy r>dB (42) 

where ap= sin-1(rfP/r), and as= sin'1 (ds/r). The 
normal stress in the plane of the crack reduces to 

Elm = isini 
Gn 51 

-yG(dP) 

lV4-^J 
r<ds. (43) 

7. Some Specific Examples Of Prescribed 
Temperatures 

7.1 INVERSE SQUARE OF THE DISTANCE 
Assume that the temperature distribution over the 

physical crack surface is expressed as 
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Then 

and 

«M ■ -f ■ 

G(d,) = -Id,, 

\&-H*m- 

(44) 

(45) 

(46) 

The temperature distribution is 
\2f 

nm*-T0\-f l-f-{$).r<dT.W) 
The width of the plastic zone for each case is given as 

and 

(49) co2 = 1-,1-y 

For small values of y (less than 0.1), the values of CD 

for the two cases differ by less than 2.5 percent. 
However, as y increases, the difference between the 
values of CD becomes more apparent. 

The crack displacements and the normal 
stresses in the plane of the crack for each case can be 
found by substituting Equations (45) and (46) into 
Equations (35), (36), (42), and (43). 

7.2 CONSTANT OVER AN ANNULAR REGION 
An annular region of the crack face is maintained 

at a constant temperature below the reference state 
suchthat 

g(X) =-H(a-X). 
Then 

G(dT) = -Ja2-dj . 
For r < a, 

and for r > a, 

-t^%Mf,«4    (53) 
The temperature distribution is 

2T,(,ja2-df 

(50) 

(51) 

(52) 

+ - 

T(r,0) = —r0sin   ,   , 
1 L2    -2 

, r<dT.    (54) 

The width of the plastic zone for each case is given as 

co, = l-^l+y2(p2-l) (55) 

co2 = l-^l-y2(p2-l), (56) 

and 

where p s a/dT . As expected, the wider the annular 
region of constant temperature, the wider the plastic 
region, and the more slowly the two solutions begin to 
differ. 

The crack displacements and the normal 
stresses in the plane of the crack for each case can be 
found by substituting Equations (51), (52) and (53) 
into Equations (35), (36), (42), and (43). 

7.3 EXPONENTIALLY DECAYING 
The temperature difference decays exponentially 

from a maximum absolute value at the tip of the 
crack: 

g&) = -,4*)> (57) 

where c is some constant. Then 

G(dT) = -ecdrdTK}(cdT), (58) 
and the temperature distribution is 

r(,,o, = -iT^"r-!fßf,r<d„ m 
71 dT ->it2-r2 

where KQ and Kx are modified Bessel functions of 
the second kind. The width of the plastic zone for 
each case is given as 

»i = i-y^i+y2[*^r:(«fj]2     (60) 

= l-^l-y2^*:,^)]2 . (61) 
The slower the rate of temperature decay, the wider 
the plastic region, as is expected, and the more slowly 
the two solutions begin to differ. 

The crack displacements and the normal 
stresses in the plane of the crack for each case can be 
found by substituting Equation (58) into Equations 
(35), (36), (42), and (43). 
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The Thermoelastic Problem of Uniform Heat Flow Disturbed by a 
Penny-Shaped Crack in a Finitely Deformed Incompressible 
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The effect that the lateral normal stresses has on the thermal stresses for a penny-shaped crack is 
investigated on the basis of the theory of small deformations superposed on finite deformation. An infinite 
homogeneous incompressible isotropic elastic solid is initially subjected to an axisymmetrical tension of 
any amount at infinity. The deformation which is produced by a uniform heat flow disturbed by a penny- 
shaped crack is then superposed and characterized by a small displacement field. The equations of 
equilibrium are derived in terms of the temperature gradient and the lateral normal stress. 

Using the techniques of Hankel transforms and multiple integrations, the thermal stresses and 
displacements in the crack plane are obtained in closed forms. The mode-II stress intensity factor is shown 
to be dependent upon the lateral normal stress. Both the superposed vertical displacement and the shear 
stress are symmetrical with respect to the crack plane. The superposed radial displacement and all the 
normal stresses are shown to be antisymmetrical with respect to the crack plane. 

Key Words: Thermal stress, heat flow, finitely deformed medium, penny-shaped crack, mode-II fracture 

1.    Introduction 

The final deformed state of a material body can often 
be reached by the composition of two deformations: an 
initial finite deformation and a superimposited 
infinitesimal deformation [1]. The stress distribution 
for a penny-shaped crack in an infinite elastic solid under 
infinitesimal deformation depends upon the tension 
normal to the crack plane, but is independent of the 
normal uniform stresses parallel to the crack plane. In 
the present work, the effect that the lateral normal 
stresses has on the thermal stresses for a penny-shaped 
crack is investigated on the basis of the theory of small 
deformations superposed on finite deformation [1,2]. An 
infinite homogeneous isotropic elastic solid is initially 
subjected to an axisymmetrical tension of any amount at 
infinity. The deformation which is produced by a 
uniform heat flow disturbed by a penny-shaped crack is 
characterized by a small displacement field [3]. The 
equations of equilibrium are derived in terms of the 
temperature gradients and the lateral normal stress. 

The current thermoelastic problem involves a system 
of three inhomogeneous partial differential equations 

which are solved using the techniques of Hankel 
transforms. Superposed thermal stresses and 
displacements are solved and presented in closed forms. 

2.    Equations of equilibrium 

An infinite homogeneous isotropic elastic solid is 
initially subjected to an axisymmetrical tension of any 
amount at infinity. The finite radial and axial stretches 
are denoted by \i and X, respectively. The metric tensors 
and the strain invariants are calculated using cylindrical 
coordinates (9,=r, 02=6; Ö3=z). In order to obtain explicit 
and closed-form solutions in later calculations, the 
material is assumed to be incompressible. Under this 
assumption, the non-vanishing components of the 
contravariant stress tensors have the following form [1, 
2]- 

T" = r2T22=^2_A2)^ + /x2^ (1) 

dW dW 

dh dl2 
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and the strain energy function W (I„ y is a function of 
the strain invariants I, and I2. The third strain invariant is 
equal to unity, i.e., I^l^jj.4. The scalar pressure P is 
related to the derivatives of W as follows: 

F = -X2[® + 2\12¥] (3) 

The above expression is obtained from the condition 
x»=0. 

An infinitesimal thermoelastic displacement field is 
now superposed on the finitely deformed body. The 
temperature field considered is axisymmetrical with 
respect to the z-axis. Therefore, the associated 
thermoelastic problem has axisymmetrical deformations 
which can be characterized by the displacement 
components (u, o, w). The actual strains are related to 
the derivatives of the displacement components. For a 
temperature change of 6, the normal thermal strain is 
equal to a,0 where a, is the coefficient of linear thermal 

expansion. The superposed stress tensorT/y are related 
to both the actual strains and the normal thermal strains. 
Following the procedures for obtaining the superposed 
stress tensor in [1,2], the thermal strains are incorporated 
into the current stress tensor components as follows: 

+ CC2 

+a2 

^3 __, 

(H 9\ + p'      (4) 

Ji_a/0|+/(5) 

fdw     dw}    .12       ,23 

a2 = 2[(/x4 - /T2)»F - jT*(* + ß2v)] 

«! = 2[(fT2 - ß4 )A + (l - ß-6 - 2ß6 )F 

+{ß~4 -ß^B-ß^^ + ß2^)] 

a3 = 2/i_4[(l - ß^ß^A + 25 

+3ß~2F ) + ® + ß2>¥ ] 

A = 2 
dir 

5 = 2 
dir 

F = 2 
dlidl2 

(6) 

(7) 

(8) 

(9) 

(10) 

(ID 

(12) 

In terms of the expressions for %"] in Eqs. (4)-(7), 
the equations of equilibrium in the absence of body forces 

for the superposed field are obtained [1, 2] in  the 
following forms: 

d2u    I u\d2w    dp'    0 99   n 

dzl dr 
36 I       in d ( Äf |  / J w   dp'      dö   n 

ßl={oci + a2-3tn)jat (15) 

ß2 = (a3-3a4-2'cu)at (16) 
The condition of incompressibility has the following 
form: 

rar az 
(17) 

3.    Temperature field and formal solution 

A penny-shaped crack with a radius a is assumed to 
be located in the interior of the medium. The z-axis is 
normal to the crack surface. The origin of the coordinate 
is located at the center of the crack. There is a uniform 
steady heat flow in the direction of the negative z-axis. 
The heat flow has a uniform temperature gradient e. The 
disturbance due to the crack results in a temperature 
modification 6(r, z) of the original field. The surfaces of 
the crack are thermally insulated. The thermal boundary 
condition at z=0 can be written as [3]. 

98 
— = -£,r < a;6 = 0,r>a 
az 

(18) 

The steady-state temperature field is governed by a 
Laplace equation. The thermal boundary value problem 
is solved by using the zeroth order Hankel transform. 
The transformed solution obtained can be written as: 

6° = Cse'57-,Cs = j* QXIQ{Xs)dl (19) 

Where the temperature field on the crack surface is: 

fi = 2e(a2 - r2y2/7C,r < a (20) 

The disturbance temperature field produces thermal 
loadings. The thermoelastic boundary conditions at z=0 
can be written as [2,3]: 

T'
33
 =0forallr, u= 

|>(r),0<r<a 

l0,a<r (21) 
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To solve the system of three field equations and to satisfy 
the above boundary conditions, the first order Hankel 
transform is applied over Eq (11), and the zeroth-order 
Hankel transform is applied over both Eq. (12) and (13). 
The transformed equations form a system of three 
inhomogeneous partial differential equations in terms of 
the transformed temperature field 8 in Eq. (17) as 
follows: 

d2ul dw 0 
a^-^j-+p"a4s——sp   =-ß\sd o 

dz' dz 
32-0     2i/0 

6..  ,2.,0.„   r& ,ff     -ß® -pa4s w + a$ —2 
dz 

dz 

dz dz 

(22) 

(23) 

(24) 

ID the above expressions, the strain energy function is 
assumed to be of the Mooney type [1,2] in order to have 
specific roots of the characteristics equation which is 
involoved in obtaining the homogeneous solution of Eqs 
(22M24). The particular and homogeneous solutions of 
the three transformed equations are obtained and combined 
into the general solution with unknown constants which 
are determined by satisfying the boundary equations in 
Eq. (21). The formal solution obtained can be written in 
the following forms: 

(25) 

(26) 

w^B^-x+lhe-^+dzd0 

Ü1 = Ble-sz+ß3B2e-Ssz 

+[3at+d(sz-i)]e°/s 

p"=(l-li6)tX4sBLe-*+[(p?-3)j 

+ft / a4 + 3a, + (l - ß6 )dsz]a4e°     (27) 

d = [{ß2-ßi)fcc4 -3at]/l(ß6 -l)        (28) 

(l-Zi6^ =a3p -J2a3a, +[(p6 -3)d 
+ßi/a4+3at]a4}C (29) 

p3B2 -i
l-Bi- (3a, - d)C (30) 

41 = ff fy(X)Ji{As)dZ. (3D 

4.    Thermal stress and displacement 

The superposed shear stress must be vanishing on 
the crack surfaces. To satisfy this condition, the first 
order Hankel transform is applied over the shear stress in 
Eq. (7).   The transformed stress is then calculated in 

terms of the transformed displacements. The Hankel 
inversion of the result at z=0 is: 

T/,3=-Ä7,+Aff2 (32) 

h = fV/j (sr) Jfl AftXs)Ji (Xs)dMs        (32) 

I2=fCs2Ji(sr)ds (33) 

£ = -cc40i9+|i6+3tl3-l)/n3(*i3+l) (3*> 
M = \a4 (3p12 + 3ß9 + Iß6 + 3ß3 - 2) 

-(T
11

 - a2))zß~3(ß3 +1)~ (35) 

The shear stress vanishes for r < a. Under this 
condition, Eq. (32) becomes an integral equation, from 
which the crack shape function is solved [3] as follows: 

<j> = 2Mer(a2-r2)1,2/37cK (36) 

For r>a at z=0, the shear stress has the following form 
[3]: 

T'13 = 2Mea3(r2 -a2T112 /(3w) (37) 

The other superposed stress components at z=0 are also 
calculated using the similar procedures the results are as 
follows: 

T
,U
 = -(at + <x2)a,e + a2/5 (38) 
+at (3a! - 2a3 )/6 + (a3 - ax ) J7        (39) 

rV22 = -(ai + a2 )at9 - a2I5 

+at (3a1 - 2a3 )I6 + (a2 + a3-cci )/7 (40) 

where for r<a 

_^2_.2,1/2, I5=(az -rJ-y'LG,G = 2Mel3nK (41) 

76=2e(a2-r2)1/2/7F (42) 

I7=[2(a2-r2)l/2-rHa2-r2)-1/2]G (43) 

These three quantities vanish for r>a. From the shear 
stress in Eq. (37), the mode-II stress intensity factor is 
K,F2eMa3/2/3jr"2. The quantity M is a function of the 
lateral normal stress. 

The superposed normal displacement at z=0 is 
obtained in the following form: 

w = (K2I3 + M2I4 )lß3{l + ß3) (44) 
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K2 =l + n3-oc3/a4 (45) 

M2=at(3+2a3/a4)+(ß6-3)d+ßl/a4 (46) 

The quantities I3 and I, have two different expressions. 
For r<a 

I3=Gn{a2-3r2/2J/4, 

I4=e{a2-r2ll)jl 

(47) 

(48) 

In the range outside the crack tip, i.e., r>a, 

k =3G c(r2-a2f2+(2ay3-r2)sin-\alr) M   (49) 

/4 =e Jr2 -a2Y2 +{la2 -r2)sia~l(a/r) \/2x (50) 

,/13 The quantities X      and w are symmetrical with 
respect to the plane z=0.    However, the other four 

-'33 .'11 r2x'22 
quantities    T    ,     X   ,     r X and    u    ate 
antisymmetrical with respect to the midplane z=0, and 
vanishing outside the crack surface on the crack plane. 

References 

(1) Green, A.E. and Zerna, W., Theoretical elasticity, 
Clarendon Press, Oxford, 1968. 

(2) Tsai, Y.M., Initiation and propagation of a penny- 
shaped crack in a finitely deformed incompressible 
elastic medium, Engr. Frac. Mech. Vol. 14, pg. 627, 
1981. 

(3) Tsai, Y.M., Transversely isotropic thermoelastic 
problem of uniform heat flow disturbed by a penny- 
shaped crack. J. Thermal Stresses, Vol. 6, pg. 379, 
1983. 

22 



Theoretical Analysis of Thermal Stress Intensity Factor 
for Nonhomogeneous Medium with a Penny-Shaped Crack 

Sang-Pyo Jeou* and Yoshinobu Tanigawa** 

* Graduate Student, Osaka Prefecture University, 1-1, Gakuencho, Sakai, Osaka 593, JAPAN. 
** Department of Mechanical Systems Engineering, Osaka Prefecture University. 

In this study, an axisymmetrical thermoelastic singular stress problems for a nonhomogeneous 
medium is treated theoretically. It is assumed that the nonhomogeneous material properties of shear 
modulus of elasticity G, the coefficient of linear thermal expansion a, thermal conductivity x vary 
with the axial coordinate z according to the power product forms, the material property of which has 
already proposed by Kassir. As an analytical model, a nonhomogeneous infinite body with a penny- 
shaped crack subject to axisymmetrical heat supply from the crack surface is considered. Distributions 
of displacements and stresses are analyzed using the fundamental equations system proposed in our 
previous paper and thereafter thermal stress intensity factor at the crack tip is evaluated theoretically. 
Numerical calculations are carried out for several cases taken into account the variety of 
nonhomogeneity of G, a and x. The influence of these nonhomogeneous material constants affected 
on the thermal stress distribution and the thermal stress intensity factor is discussed. 

Key Words: Thermal Stress Intensity Factor, Nonhomogeneous Medium, Axisymmetrical Problem, 
Crack Problem, Thermoelasticity. 

1.   Introduction 

In recent years, among numerous advanced 
composite materials, nonhomogeneous materials such 
as Functionally Graded Materials have received 
considerable attention in the field of structural design 
subject to extremely high thermal loading. The 
material constants for such nonhomogeneous 
materials are described by an arbitrary function of the 
coordinate system. Therefore, the governing equations 
for the temperature field and the associated 
thermoelastic field become of nonlinear form in 
general case, thus, the theoretical treatment is very 
difficult and the exact solutions for both the 
temperature and thermoelastic fields are almost 
impossible to obtain. 

However, under the assumption that the material 
property of shear modulus of elasticity G is given in 
the arbitrary power of an expression containing the 
variable of the axial coordinate z, the axisymmetric 
isothermal problems subject to mechanical loading for 
such nonhomogeneous materials have already 
developed by MJCKassir^. And the analytical 
developments of thermoelastic problems for such 
nonhomogeneous body have been discussed by 
T.Hata<2X3). However, it can be seen from our 
verification that the analytical treatment could not be 
adaptable to the thermal stress problems with 
mechanical boundary conditions of being traction 
free. 

Then, in our previous paper<4), we have 
reconsidered the thermoelastic problems for such a 
nonhomogeneous body, and have reconstructed the 
fundamental equations  system when the thermal 

loading is acted. 
In this study, making use of the fundamental 

equations system proposed in our previous paper, an 
axisymmetrical thermoelastic problem of singular 
stress field is treated, and the thermal stress intensity 
factor at the crack tip is evaluated theoretically. As 
an analytical model, we consider an infinite body with 
a penny-shaped crack subject to an axisymmetrical 
heat supply from the crack surfaces. Numerical 
calculations are carried out for several cases taken into 
account the variety of nonhomogeneity of shear 
modulus of elasticity G, the coefficient of linear 
thermal expansion a and the thermal conductivity 
2. 

2.   Fundamental relations 

Axisymmetrical isothermal elastic problems for 
the above-mentioned nonhomogeneous body have 
already discussed by Kassir, and the assumption is 
introduced for shear modulus of elasticity G and 
Poisson's ratio  v, which is given by 

G{z) = G, L+l v= const. (1) 

where G0 and m are the arbitrary constants, a is a 
typical length defined subsequently. 

Now, the displacement components u and w in 
the radial and axial directions are defined by the 
following relations. 

u = (Z + a)%,   w = {z+a)^--f (2) 

Then, the fundamental equation for the displacement 
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function / can be derived from the equilibrium 
equations in the radial and axial directions, which is 
given by 

3f VJ/ + 
m 

z + a dz 
= 0 

r dr\ dr ' dz2 

(3) 

(4) 

Here, the following condition between v and m is 
introduced 

v = -; Q<v< —; 0<m«x> 
m+2 2 (5) 

Now, in order to establish the fundamental 
equation for the thermoelastic field, we now introduce 
the thermoelastic displacement potential function 6, 
which is defined by the following relations. 

dd> 3d 
u=——,   w=—2~ 

3r' 3z (6) 

Then, the fundamental equation for 6 can also be 
derived from the equilibrium equations using the 
relations of Eqs.(l) and (5), which is shown as 
following form. 

VV = -(m+3)(m+l)a(z)T(r,z) (7) 

In which, a{z) and T\r,z) are the coefficient of linear 
thermal expansion and the temperature change, 
respectively. 

Thus, the displacement component a and w for 
the thermoelastic field are given by the method of 
superposition of Eqs.(2) and (6). Then, the thermal 
stress components can be evaluated from the stress- 
strain relations in terms of displacement components. 

Now, we assume that the thermal conductivity 
l\z) is given by the following form 

X{z) = ^ rw+1 a (8) 

in which ^ and / are the arbitrary constants. Then 
the axisymmetric heat conduction equation in a steady 
state is given by 

V2T + 
I    3T 

z + a dz 
= 0 (9) 

3.   Analytical examples 

As an analytical example, we now consider a 
nonhomogeneous infinite body with a penny-shaped 
crack of its radius a located at the plane z = 0 as 
shown in Fig.1. Furthermore, we suppose that the 
temperature change is caused by the surface heat 
generation (heat sink) qaF[r) from the crack surfaces. 

3.1 TEMPERATURE ANALYSIS 

Fig. 1 Coordinate systems of an infinite body 

Heat conduction equation and the associated 
thermal boundary condition are represented in the 
following dimensionless forms. 

z dz 

3T *-l:   ^m-^-r) 

•»       -      1        r^l 1     3 zsz + 1,   V =  
F dr 

3* 
\  3FJ + 3z1 

(10) 

(11) 

(12) 

(13) 

where, F{7) is an arbitrary dimensionless function 
associated to the surface heat source, H{) is a 
Heaviside function. 
Here, the following dimensionless quantities have 
been introduced to derive Eqs.(10)~(12). 

T = T/(q0a/A0),(F,z) = (r,z)/a) 

~^) = *)IK J 
where, 9o is a typical value of surface heat generation 
(heat sink) per unit time and unit area. To solve the 
fundamental equation (10) under the conditions (11), 
we now introduce the method of Hankel transform of 
order zero over the variable F. Then the temperature 
solution is given by 

(14) 

*4o-/) (15) 

(16) 

where, Jy() is a Bessel function of the first kind for 
order v, and KM() is a modified Bessel function of 
the first kind for order p. 

3.2 THERMOELASTIC ANALYSIS 
Fundamental differential equation systems for 

the unknown functions / and 6 are given in the 
following dimensionless forms. 

v>f+HL£L=0 
z 3z 

W = ~{m + 3)(m - l)ä(£)f(r,z) 

(17) 

(18) 
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The corresponding displacement components and the 
stress components are represented in dimensionless 
forms as 

u=z—i-+-z- r      87    37 

U.=2—~-f+—}T 
dz dz 

(19) 

5>2G(*) 

5> = 2G(£) 

5L = 2G (z) 

?„ = 20(f) 

or       oz     or 

~2L£L-£L+L£l-(m+3)ä(2)T(7,z) 
7 37     dz     F or    v       1   \i  \     > 

*-4^-44+-^-(«+3)«(f)f(r.£) 
oz      oz    oz' 

. of       cr$ 
z—*—+- 

<?F<?z    ^r<rz 

(20) 

Then, mechanical boundary conditions on the crack 
surface and its extended surface are given by the 
following relations. 

7 = 1:5^=0  (0<F<oo)' 

5L=0 (0<F<1)   ► (21) 

ü. =0 (l<F<oc) j 

Here, the following dimensionless quantities have 
been introduced for Eqs.(17)~(21). 

(ür,ü:) = (ur,u:)/(a0q0a\ J>%) 

f = fl{ccaqaa- /^),   $ = ^/(a0<70a
3 A>) 

G(z) = G{z)/G0,  ä{z) = a{z)/a0 

(22) 

Tlie solution for / governed by Eq.(17) is represented 
by the following form. 

7=rCi(*)f'^(5f)*/0(5r>fr 

p-±{l-m) 
(23) 

Similarly, the complementary solution  &   for  <j> 
governed by Eq.(18) is represented by the following 
Hankel transformed form. 

t; = C2(s)e-* (24) 

Now, we consider three different cases for 
nonhomogeneous material properties as shown in 
Table 1, the particular solutions 4,' for these cases are 
given by the following forms. 

F'(s) .-„-*-, ^(c)=-('»+3)('»-1)-i7
Zfe (25) 

Table 1 Numerical parameter of nonhomogeneous 
material properties 

I(z) ä(ß) G(l) 

Casel 1 1 l~f : 0<,m<\ 

Case 2 1 z l~z  : 0<7H<1 

Case 3 z-2 1 l~f : 0</n<l 

r,w=-('»+3)(m-i)^-(f+Sz*y<^ (26) 

?;(-« =-(m + 3)(m-l)^.z(3+szy^   (27) 

Then, the solution for ^  governed by Eq.(18) is 
represented by the following equation. 

^[C&K'+tfW^* (28) 

Substituting Eqs.(23), (28) into Eqs.(19), (20), the 
components of displacement and stresses are 
formulated. To obtain an unknown coefficients 
C,(s), C, (s), we have to solve dual integral equation 

derived from boundary conditions (21), which is given 
by the following form. 

l~A(uyo(au)du = 0 (l < a < »)j 

Then, the solution A(u) is given by the form(5). 

A{u) = -j=ll
ohl(t)sm(ut)dt (30) 

Here, the unknown function \{t) is a solution of 
Fredholm integral equation of the second kind given 
by 

h,{x)+\\l{
u)K(x>ll)du=H{x) ;o^*^i (31) 

where K(x,u) and H(X) are defined by 

^,,) = (2^)-,/2{A'£(|x-«|)-A'c(x + K)}       (32) 

„/■A fTr      9WZ 

(33) 

(34) 

Eq.(31) can be solved numerically for \(x). Knowing 
h^x), we can evaluate the distributions of stresses and 
displacements and thermal stress intensity factor Kt 

at the crack tip. 
The value of K, is evaluated from the following 
equation. 

K, ^ K,        2° = üm^r-ljä.l,., 
G0aaq0ay!a     *-" 
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= -4Ä,(l) (35) 

4.   Numerical calculations 

Assuming that F(?j equal unity for surface heat 
source, numerical calculations are carried out for 
three cases represented by Table 1. 

Fig.2 shows the temperature distribution f in 
the radial direction. Namely, Fig.2(a) shows the result 
for Casel and Case2 assumed as I(i)=i, Fig.2(b) 
shows one for Case3 assumed as !(*")=*-2. 

If- 
-0.2 

!        !         ! 1 
 

-0.4 

-06 

J" i 7/\ Case 1,2j 

-0.8 

-1 

 \-A \ 
 z-0 
— -z-O.S 
 z-1.0   - 
 Z-1.S 
 z-2.0 

 i L—   i        i        : 

0.5      1       1.5      2      2.S      3 

(a) Case 1 and Case 2 (A(£) = I) 

0.5      1       l.S      2      2.5      3 

7 

(b) Case 3 p(f) = f"2) 

Fig.2 Temperature distribution 

Fig.3 shows the axial stress distribution of 5^ 
for Casel ~ Case3 when the nonhomogeneous 
parameter m equal 0.5, respectively. From these 
figures, it can be seen that the stress distribution is 
influenced by the variation of ä[S) and x{i). 
_ Fig.4 shows the thermal stress intensity factor 
K, for three different cases. It can be seen that the 
variation of F, is affected by the stress distribution 
and nonhomogeneous parameter m. 
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Mixed Boundary Value Problem of Penny-shaped Cut 
under Axially Symmetric Temperature Field 

J. V. S. Krishna Rao and N. Hasebe 

Department of Civil Engineering, Nagoya Institute of Technology, 
Gokiso-cho, Showa-ku, Nagoya 466, JAPAN 

The axially symmetric problem for a Penny-shaped cut under thermal conditions is solved in the case 

the displacements are prescribed on its upper surface and stresses on its lower surface. The thermal 

conditions applied on the upper surface is different from the lower surface. Solution of the problem is 

obtained using Hankel transforms and Abel operator of the second kind. The boundary conditions of 

mixed boundary value problem reduce to a set of singular integral equations which are reduced to 

that of solving Riemann-Hilbert problem. Closed form solution is obtained. Explicit expressions are 

written for stress on the pane of the crack. 

Key Words: Mixed Boundary Value Problem, Disc-like Inclusion, Abel Operator, Hankel Transform 

1. Introduction 

The class of problems which deal with the stress 
analysis of elastic bodies reinforced with inclusions 
which are either rigid or elastic, is of importance to 
the study of multiphase composite materials. In the 
majority of studies relating to inclusion problems it is 
assumed that perfect continuity or a bonded contact 
exists at the inclusion-elastic medium interface [3]. In 
the context of disc inclusion problems, Keer [4], 
Hunter and Gamblen [5] have investigated problems 
related to disc inclusions in which complete 
debonding occurs at plane face. In this paper we 
examine the behavior of the thermal stresses around a 
thin disc-like inclusion where debonding has 
occurred on one side while other side perfect bonding 
exists. The disc-like inclusion is subjected to general 
temperature conditions, that is. temperature applied 
on one face is different from the other. 

To solve a class of crack and some inclusion 
problems a method is developed in the papers by 
Parihar and Krishna Rao [6] and Krishna Rao and 
Hasebe [1, 2 ]. The same method is used to solve the 
mixed boundary value problem. Problems considered 
in Ref. [1.2], the boundary conditions and general 
results obtained in terms of stress, displacement, 

temperature and heat flux discontinuities at the crack 
plane reduces to that of solving Abel integral 
equations. But the mixed boundary value problem 
considered is reduced to a singular integral equations 
which intern reduced to that of Reimann-Hilbert 
problem. Even though the problem has closed form 
solution, evaluation of physical quantities like Stress 
Intensity Factors, Crack Opening Displacement, 
Energy required to open the crack etc. are of 
engineering interest and evaluation of them is not 
simple even in the special cases of thermal 
conditions. It is very important to mention here that 
the problems of thin disc-like or penny-shaped 
inclusions in three dimensions are natural analogue to 
the line inclusions in plane problems. 

In the present paper, the problem considered is 
solved using the general results obtained in [1, 6] 
reducing to that of solving Riemann Hubert problem. 
Closed form solutions are obtained to the unknown 
functions. Explicit expressions are given for stress 
components on the crack plane and order of the 
singularity rim of the crack is discussed. 

2. Stress Field in the Neighbourhood of the Crack 
Plane Using Abel Operator of the Second Kind 

Let the displacement components and temperature 
field in the upper half space (z > 0) be denoted by 
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u^fczj.u^to), Ö(1)(r,z) and their limiting 

values as z-*0+ by u^nO), u™(rJS), 6(1)(r,0) 

respectively. Similarly, let the displacement 
components and temperature field in the lower half 

space ( z < 0 ) be denoted by u^fcz), u(
2
2)(r,z)r 

8   (r,z) and their limiting values as x -> 0 - by 

u{;\r,0), u?\r,0), 6C2)(r:0) respectively. Using 

an obvious notation for stress components we set 

d :p[uP(r,0)-nt2>(r,0)]J_ 
j ,  dr«A(p),p>0 (1) 

ÖPP Vr2-p2 

S ] 1     ' dr = B(p);p>0    (2) 
dp 2      „2 Vr2-P 
JP[o<-'(^>(r,0)ldr,C(p)p>0      (3) 

P       Vr -P 
•r[a^(r,0)-qg>(r,0)] 

,2      A2 
dr = D(p),p>0       (4) 

/ 

Vr -p 

r[6(1)(r;0)-e(2)(r;0)] 
2      „2 Vr2-P 

dr-E(p),p>0        (5) 

.iI-eW(r.O)-i-e(2>(r.O)] 
/~ rr^l dr = F(p):P>0  (6) 
P Vr2-P2 

then the Abel transforms of the second kind of stress 
and displacement components and temperature field 
a={r,z), o^z), u,(r,z) , uz(r,z), 6(r,z) are 

given in [1, 6] ( See equations (2.19)-(2.24) of Ref.[6] 
and (45)-(51) of Ref.[l] ). The limiting values of 
these stress, displacement and temperature fields as 
z-*0+ and as z -* 0 - can be used to solve the 
mixed boundary value problem of disc-like or Penny- 
shaped inclusion in the plane z=0 which is subjected 
to loading conditions on one face, prescribed face 
displacements on the other side and general 
temperature conditions. 

3. Penny-shaped Cut Under Mixed Mode 
Conditions and General Temperature Conditions 

Let the circular disc-like ( Penny-shaped ) 
inclusion be situated in the plane z=0 of 
homogeneous isotropic infinite elastic body as shown 
in Fig.l. In terms of the cylindrical coordinates 
{r,$.z)     the    position    of   the    inclusion    is 

2 « 0, 0 < r s a     Here we consider debonding on 

the upper surface (0~<r < a , z -> 0+) and perfect 

bonding on the lower surface (0 < r < a , z -* 0-) 

of the inclusion. The surface of the inclusion are 
subjected to general temperature conditions, that is, 
the temperature applied on the upper surface is 
different from the lower surface. The continuity and 
the boundary conditions may be written 

uf)(r,0)-n{2)(r,0),       r>a (7) 

(8) ,<»)< ,(2) u,'(r,0)-nW(r,0),       r>a 

,Wi r(2) cr£(r,0)-o£J(r,0),      r>a 

r«/ r(2) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

e(1)(r,0)-e(2)(r,0)-'lf(r)s      0sr<a (17) 

e(1)(r;0)+e(2)(r,0)«T2(r),      0sr<a  (18) 

and the displacement, temperature fields are assumed 
to be  continuous  at the tip  of the  cut.  Radial 
components of the displacement vanish at origin. 

Upper Half Space z>0 (1) 

cr£(r,0)«o^(r,0),  r>a 

6(1)(r,0)-e(2)(r:0):   r>a 

i_e«(r.0) = ±e(2)(r.0).  r>a dz dz 

og)(r,0)-x(r), 0sr<a 

a{£(T,0)-a(T), 0<r<a 

u(r
2)(r:0) = U(r); 0sr<a 

u(
z
2)(r:0) = V(r), 0£r<a 

External Force Boundary 

. Displacement Boundary 

Penny-Shaped Cut 

^nnniä^ 

a 

Lower Half Space z<0 (2) 
Fig.l Mixed BVP for Penny-shaped Cut 

Continuity conditions (7)-(12) give rise 

A(pJ - 0, B(p) - 0, C(p) = 0,    p > a (19) 

D(p) - 0, E(p) - 0, F(p) - 0,    p > a        (20) 

Using (17), (5) and (11) we can write 

<(r) 
E(t) -/ 

Wr2-t 
=dr.   0 < t < a (21) 

Using   the   boundary   conditions   (13)-(16),   (18), 
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equations (75), (90)-(93) of Ref.[l], equations (3.35)- 
(3-38) of Ref. [6] and (l)-(4) of the previous section 
the problem can be reduced to 
r
r F(t)dt 

J FT 
^ T*/   \ —jT2(r), 0<r<a (22) 

ovr -t 

and a set of singular integral equations 

(1.2vHl(t).,2(t)+2fcZ);W!^ 
Jtl     J_a   s-t 

- G(t), -a < t < a 

(3_4v)(Mt) + (l-2v)Mt) + ^^/^ 
—     J_   s-t 

(23) 

ra 

- H(t), -a < t < a (24) 

where 
f_8(l_v)[g2(t)-igl(t)]/n    0<t<a 
|_8d_v)[g2(-t)+igl(-t)]/^;-a<t<0 <   } 

f^l-vfeW+ihjWj/jr,   0<t<a 
™ = |-8(i-v)[h2(-t) -ih1(-t)]/Ä,-a < t < 0 l   ; 

The functions §x and ()), are given by 

Ms) - 5(s) + iy (s) - D(s) + iC(s) , (27) 

4>2(s)«a(s) + iß(s)-2|i[A(s)-iB<s)],        (28) 

The loading term on the right hand side of equations 
(23)-(24) together with (25)-(26) are given by 

;i(t)=-/- 
jrA so(s)       JTJXI+V^

1
 sT^ (s) t *. 

0<t<a    (29) 

0 < t < a    (30) 

,.   n\ st(s)   ,    mi/l+vja-,. rt ,„,. 
g2(t)-T/-r==dr+JiB;—pB(tX0<t<a (31) 

■oVt2-s 4(l-v) 

0<t<a 
Let K = 3 - 4v : define the transformation 

the set of coupled equations (23)-(24) can be written 
as uncoupled integral equations and are given by 

(i-2v-*"Wt;+^^f*^ 
\ / in J        S-t 

(32) 

(33) 

m 

-(G(t) -iK-I/2H(t)).- a < t < a  (34) 

(i.*,^»^»*^/»-«* 
jn s-t 

1 
(G(t) + iK"1/2H(t))?-a <t< a (35) 

The constants appeared in the solution of the singular 
integral equations can be settled using the conditions 

a a 

J>2 (s)ds - 0;      fa (s)ds - C0 (36) 
-a -a 

The Cauchy Integrals for Xj - j=l, 2 are given by 

1  axYU 
*/u>-irr^^dt,j-lf2 (37) 

2ra i t - u 

<I>J" ; 4>J" and 5>2 : $2 are limiting values of 3>j 

and $2 which are holomorphic functions of complex 

argument    defined in the whole plane cut along 
(-a. a). The functions  Xi  aa^ 7.2 m tenns 0I" 

3>J" : <£[" and $2 : <I>2 are given by 

Xl(s)«|[<Pl(s)-iK-1/2(|)2(s)] 

m^(s)-<b-x(s) (38) 

X2<s) - —[cpi(s) + iK~1/2<t>2(s)j 

-*;(S)-Q;(S) (39) 

Using (37)-(39), equations (34)-(35) can be reduced 
to Riemann-Hilbert problem [5. 7] and the solutions 
are given by 

XCui       jGW-iK-^H^lit 
*,(u) ^g— fLli_ lit. (40) 

(K-hc^^i Xt(t)(t-U) 

X (u)       a fG(t) + iK-V2H(t)ldt 
^(u) MO       ,Li^ ÜL  (41) 

(K+iKV2)4mZt      X|(t)(t-u) 

where, since the solution to the homogeneous 
problem is bounded at one end point, the arbitrary 
polynomial associated with the solution is zero and 
the Plemelj functions Xj and X2 corresponding to 

<E>: and &2 respectively are given by 

X1(u)-[(u + a)/(u-a)J+1/4 (42) 

X2(u)=[(u-a)/(u + a)]"Y+I/4 (43) 

and Y is in terms of material constants and is written 

as 
Y-(logK)/4jri (44) 

The unknown functions A, B, C, D are given 
by the equations (38)-(41), (27), (28) and (19)-(20). 
The function E is given by (21) and F can be 
determined inverting the Abel integral equation (22) 
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and is given by 

F(t) = -T2*(0)-Affi,0<t<a        (45) 
o Vt-r2 

together with equation (20). Since the stress and 
displacements are in terms of A, B, C, D, E. F, 
therefore, in principle this completes the solution of 
the mixed boundary value problem. 

4. Stress Components on the Plane of the Crack 
The solution of the problem given in the previous 

section is complete but for application of the general 
results obtained we shall derive some physical 
quantities of engineering interest. Jump of the stress 
components on the crack surfaces are given by 

zz 
a 2 

x 

<*rzV,0)-o42)(r,0) 

D(a)    t'fD(s)ds 

^/a2TrI+J
r^/s2-r2 

0<t<a (46) 

rz 

2 -aC(a)     *sC(s)ds 

rv"" läTt*   irJKS 
0<t< a      (47) 

Similarly, from equations (3.11)-( 3.12) of Ref. [6] 
and (79)-(80) of Ref. [1] we can simplify stress 
component carrying out integration by parts we get 

o£(r,0)+og\v,0) zz 

2n 2(X + n)B(a) + C(a) 

ji(k + 2\x) 

2u     \ 

7l(k+2ll)JQ 

r~2   2 va -r 

[2(X+2(x)B'(t)+C'(t)dt 

Vr2-t2 

2jx(l+v)a\/r2-a 2 a sT2 (s)ds 

»(1-v)        {(r2-s2h/a2I7 

r>a(48) 

a(^(r,0) + o(
r2

2)(r,0) 

2\ia. 

7lCk + 2\l) 

2u     *, 

n(k+2\JL)J0 

2(k+ii)A(a)-D(a) 

rv£^7 

[2(X + 2a)A'(t)-D,(t)]tdt 

^/rT^2 

2n(l+v)qat£,(t)dt 

' n(l-v)r (Vr^ 
r >a (49) 

5. Concluding Remarks 
In the present paper it is illustrated that the 

general results developed in Ref. [1. 2, 6] to solve a 
class of boundary value problem also can be used for 
mixed boundary value problem. In the absence of the 
thermal conditions, the problem is same as that 
considered by Keer [5], and result are in complete 
agreement. 

The expressions for stress components on the 
crack plane are given by (46)-(49). The stress 
components possess singularity of order 1/4 and 
singularity of the order 3/4. The computation of the 
functions (j>!(a)-D(a)+iC(a) and <t>2(a)=2|j[A(a)-iE(a)] 

should be done taking care of the oscillatory nature of 
the stresses in some special cases of the material 
constants. If the debonded and bonded surfaces of the 
thin disc-like inclusion are subjected different 
constant temperature conditions. Shear stress has 
unbounded nature at the rim of the crack. 
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0001 
The study of the nonlinear response of sandwich flat panels exposed to thennomechanical loading systems 

constitutes the topic of this paper. The sandwich structure considered in this paper consists of a thick 
core-layer bonded by the face layers which are assumed to be symmetrically located with respect to the 
mid-plane of the overall structure. The loads involved in this analysis consist of biaxial compressive edge- 
loads, a lateral pressure as well as a non-uniform temperature field. The effects of the unavoidable initial 
geometric imperfections as well as the character of tangential boundary conditions are also incorporated and 
their implications upon the structural response are explored. In short, the results of this study are intended 
to provide pertinent information on the thennomechanical load carrying capacity of flat sandwich structures. 

Key Words: Postbuckling, Sandwich Panel, Snap-through, Buckling Bifurcation, Thermal Load Carrying 
Capacity 

1. Introduction 

The structure of future supersonic and hyper- 
sonic flight and launch vehicles are likely to expe- 
rience enormous challenges during their flight mis- 
sions. These challenges are associated, among oth- 
ers, with the extremely high temperatures and me- 
chanical loads they must withstand. 

A typical laminated composite structure which, 
due to its exceptional properties, appears to 
be of great promise in the design of advanced 
supersonic/hypersonic space vehicle structures is 
the sandwich-type construction. Such structures 
consist of one or more high-strength, stiff face layers 
separated by a thick low-density flexible core. 

Whereas the facings provide the primary load 
carrying capacity, the core carries the transversal 
load in terms of the shear stresses. 

One of the problems, which for a better 
understanding and exploitation of load carrying 
capacity of sandwich panels is essential, is that 
associated with the determination of their non-linear 
response under complex thennomechanical loading 
conditions. 

In spite of the high relevance of this problem 
in the design of high speed vehicle structures, to 
the best of the authors' knowledge, there are not 
pertinent studies in the available literature. For a 
most comprehensive and recent survey of the work 
done on the modeling of sandwich constructions 
and on the achievements in this area, the reader is 
referred to Ref. 1. 

In the present study, the sandwich structure 
consists of a thick core-layer bonded by the 
face layers which consist of composite anisotropic 
materials, symmetrically laminated with respect 
to the mid-plane of the core-layer. The initial 
geometric imperfection consisting of a stress 
free initial transversal deflection will be also 
incorporated in the study. The loads under which 
the postbuckling response will be analyzed consist 
of biaxial compressive edge loads, a lateral pressure 
and a non-uniform thermal field. 

Having in view that the generalized mixed rep- 
resentation of the governing equations of sandwich 
structures in terms of the Airy's potential function, 
transversal deflection and of a transverse shear po- 
tential function can be obtained in special cases only, 
in the present study a representation of governing 
equations in terms of displacement quantities will 
be supplied. 

It should be noticed that the results presented 
in this paper constitute a generalization of the ones 
obtained in a number of previous papers [2-5]. 

2. Basic Assumptions and Conventions 

The global middle plane of the structure a, 
selected to coincide with that of the core layer, is 
referred to a curvilinear and orthogonal coordinate 
system xa (a. = 1,2). 

The normal coordinate 13 is considered positive 
when is measured in the direction of the inward 
normal.   The uniform thickness of the core is 2h 
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while those of the upper and bottom faces are h" and 
h', respectively. As a result, H(=2h + h' + h") is 
the total thickness of the structure. 

The geometrically non-linear theory of doubly 
curved sandwich shells, of weak core, developed 
in the framework of the Lagrangian description is 
based on a number of assumptions, such as: i) 
the face sheets are constructed of a number of 
orthotropic material layers, the axes of orthotropy of 
the individual plies, being not necessarily coincident 
with the geometrical axes xa of the structure, ii) 
the material of the core layer features orthotropic 
properties, the axes of orthotropy being parallel to 
the geometrical axes xa. iii) a perfect bonding 
between the face sheets and between the faces and 
the core is postulated, and iv) the incompressibility 
in the transverse normal direction is postulated in 
both the core and facings, 

3. Numerical Illustrations 

In the numerical illustrations a temperature 
rise linearly varying through the thickness of the 
sandwich panel will be considered.    This implies 

that herein T(xr, x2, x3) = x3T(xx, x2). As a result, 

T(Xl,x2) = -jjTu{xx,x2) = £li(*i,*2) where 
Tu and Ti are the temperature distributions on 
the external faces of the panel, x3 = -H/2 and 
x3 = H/2, respectively. 

Throughout the numerical results a symmetric 
sandwich panel of a square projection on P(L\ = 
1,2 = L), whose core layer is of transversely-isotropic 
material and the faces of an isotropic material was 
considered. It was also assumed that Ef/Gc = 
100, h/L = 0.03 and h/L = 0.002. 

In Fig. 1 the non-linear response of a geomet- 
rically perfect fiat panel subjected to a tempera- 
ture rise amplitude fu{= (1 - v2)aL2Tu/H

2) and 
to the uniaxial compressive edge load A/ii as indi- 
cated in the graph was depicted. The results reveal 
that for fixed A/"ij, the upward deflection increases 
with the rise of Ttt. At the same time, the results 
show that with the increase of this compressive edge 
loads A/ii, the upward deflections become larger and 
larger. The results also reveal that under the tem- 
perature rise Tu, the panel does not feature buckling 
bifurcation. 

Figure 2 represents the counterpart of Fig. 
1 depicted in the plane (Tu,Ai), where Ai 
(= -(l/Lx/Xa)/^1 ff2(dMdx1)dx1dx2) defines 
the end shortening in the zi-direction. The plot 
reveals that the end-shortening increases with both 

the increase in fu and A/ii. 

Figure 3 depicts the non-linear behavior of 
a geometrically perfect flat panel subjected to 
a temperature rise Tu and a lateral pre-load of 
amplitude P(= qn. The results reveal that with 
the the temperature rise Tu, the sensitivity to the 
variation of P oliminishes. 

Figure 4 depicts the behavior of a geometrically 
perfect flat sandwich panel subjected to the 
uniaxially compressive edge load rise A/ii and a 
fixed temperature T„ of various intensities. The 
results reveal that only in the absence of fu, the 
panel can experience buckling bifurcation. However, 
when the panelis exposed solely to a pre-determined 
temperature fu (i.e. when A/ii = 0), the 
panel behaves like a geometrically imperfect panel, 
exhibiting a positive "initial imperfection" when 
T„ < 0 and a negative "initial imperfection" when 
T„ > 0. With the increase in the compressive 
edge load, A/ii, the results reveal that the panel 
will experience positive or negative deflections, 
depending on whether fu < 0 and fu > 0, 
respectively. From the obtained plots it becomes 
also apparent that for ±fu the deformed shape of 
the panel is symmetrical with respect to the initial 
undisturbed configuration. 

Figure 5 representing the counterpart of Fig. 4 
depicted in the plane _(A/ii,Ai) reveals again that 
only in the absence of T„ the panel features buckling 
bifurcation. 

Figure 6 depicts the behavior of a geometrically 
perfect flat panel under a temperature rise fu and 
a pre-determined bi-axial compressive load system 
LR{= A/^/A/ii). This edge had parameter is defined 
to be LR < 0, and LR > 0 when N22 < 0. (i.e. 
when the edges x2 = 0,L are subjected to a uniform 
tensile load), when calN22, respectively. 

This figure obtained for a fixed A/ii = 1, reveals 
that the tensile edge loads (A/22 < 0) play a 
beneficial influence on the non-linear behavior, in 
the sense that with the increase of fu, for A/22 < 0, 
the deflections are smaller than in the case A/22 > 0. 
The same trend becomes apparent from Fig. 7 which 
depicts the behavior of a geometrically perfect panel 
subjected to a temperature rise and the pre-loads LR 
and P. 

All the previous results have been generated by 
assuming that all the edges are freely moveable. 

Figure 8 represents the counterpart of Fig. 4 
determined for the case of immoveable edges x2 = 
0, L. The results of this plot compared with those of 
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Fig. 4 reveal that in the case of immoveable edges 
the buckling load is lower as compared to that of 
the moveable edge case counterpart. However, as 
Fig. 8 reveals, for the same level of deflection, the 
panel is capable to carry much larger temperatures 
and compressive loads than in the moveable case 
counterpart. 

Finally, Figs. 9 and 10 reveal that in special 
cases, the flat panels can experience the snap- 
through phenomenon. In this sense, Fig. 9 shows 
that under a temperature rise ft, a flat panel 
featuring a negative imperfection subjected to the 
compressive pre-load Mi> can experience the snap- 
through buckling. The same phenomenon can occur 
(see Fig. 10) when a geometrically .perfect flat panel 
is subjected to the pre-loads P and Mi and to a 
temperature rise T„. 

4. Conclusions 

A study of the non-linear behavior of sandwich 
flat panels under a system of thermomechanical 
loadings was presented. While the theory 
was developed in a more general context, the 
numerical illustrations concern only the case 
of symmetrical sandwich structures featuring a 
transversely isotropic weak core and isotropic face 
sheets. 

The results have revealed among others, that 
under special conditions related with the magnitude 
of initial geometric imperfections and compressive 
edge pre-loads, the panel can exhibit snap-through 
buckling when subjected to a temperature rise 
varying anti-symmetrically through its thickness. 

It is hoped that the results displayed in this paper 
will stimulate further studies on this topic and con- 
tribute to a better understanding of the behavior of 
sandwich panels under thermomechanical loadings. 
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Fig. 1 Non-linear response of a flat sandwich panel Fig. 2 Counterpart of Fig.    1 depicted in the plane 
subjected to a fu temperature rise and the (T„,Ai). 
uniaxial compressive edge preload Wu- 
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Fig. 3 Non-linear response of a flat sandwich panel Fig.7 Flat sandwich panel under the action of a 
subjected to the temperature rise amplitude fu temperature rise fu, of the prescribed biarially 
and a lateral pre-load of intensity P. edge preload LR (with Mi = 1) and a lateral 

pre-load,pf intensity P = 5. 

•5     -4     -J     -2     -1      0   ' 1      2       3      4      S 

Fig. 4 Non-linear response of a flat sandwich panel p.    0 „,, D-...,..».. cgm...«.-,»». »»■■■«■■■.♦.. 
subjected to the compressive edgeload riseknd Flg" 8 ?*' counterP?*<of the case described m Fig. 4 
temperature fu of given intensities. for the CMe of the "^oveable edges s2 = 0, L. 

Fig. 5 The counterpart of Fig. 4 depicted in the plane ^ 9 ^-Jff .P*00?* \ *?   geometrically 
(Mi,$i). impertect (d0 = -0.5) sandwich panel under a 

temperature rise Tj and a compressive edge pre- 
load Mi- 

Fig.  6 Flat sandwich panel response under the temper- "     -   ,, „,.r, „,„„ L  
ature fu rise and the prescribed biaxially edge^ig- 10 Non-linear response of a flat-sandwich panel 
preload LR{= M22/M1 where  Mi = 1 and under a prescribed compressive edge pre-load 
LR < 0 when M22 < 0 (implying compression)). and a fixed lateral pre-load. 
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Micromechanical Model for Thermal Analysis of Particulate Composites 
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Thermal stresses occur at the micromechanical level of a particulate composite caused by 
the mismatch of Coefficients of Thermal Expansion (CTE) of constituent materials like the 
particles and matrix binders. The stresses affect the service envelope of a composite under an 
external loading condition. Thus, a simplified, analytical, three-dimensional, micromechanical 
model is presented so that it can compute micro-thermal stresses occurring at the constituent 
materials as well as the effective CTE of a composite based on their materials properties. The 
analytical solutions compare very well with the results obtained from finite element analyses. 
In addition, a parametric study is conducted using the orthogonal array technique in order 
to determine the effects of each parameter of the constituent materials on the effective CTE, 
micro-thermal stresses, and the solution errors. 

Key Words:  Particulate Composite, Micromechanical Model, Thermal Stress, Orthogonal 
Array, Finite Element Analysis 

1. Introduction 

Thermal stresses can occur both at the mi- 
crolevel and at the macrolevel of a composite struc- 
ture. Microlevel thermal stresses result from dif- 
ferent thermal properties of the constituent mate- 
rials. Previous thermal analyses at the microlevel 
considered only fibrous composites [1, 2]. There- 
fore, this study presents a thermal analysis of a 
particulate composite material. A simple and ac- 
curate micromechanical model is derived for com- 
puting micro-thermal stresses as well as effective 
CTE's of particulate composite materials. The 
micro-stresses denote stresses in the particles and 
the matrix. The micro-model is a unit cell model 
and consists of eight subcells; one of which repre- 
sents a particle and the rest of them denote the 
surrounding binding matrix of a particulate com- 
posite. A finite element analysis is also conducted 
to evaluate the developed micromechanical model. 

2. 3-D MICROMECHANICAL MODEL 

A three-dimensional, micromechanical model for 
a particle-reinforced composite is shown in Figure 
1(a). A clear view of subcell locations is illustrated 
in Figure 1(b). Let subcell 1 denote the particle 
subcell and the rest of them be the binder matrix 
subcells. Planes 1-2, 2-3, and 3-1 are symmetric 
planes. Thus, an one-eighth of the full unit-cell 
model is shown in the figure. For simplicity, it 
is assumed that each subcell has constant stresses 
and strains, respectively. Equilibrium of subcell 
stresses at all interfaces must be satisfied as given 
below: 

<ru _ ern, <rn - <rn, an - crn, an - <?n   (1) 

~1   — ^3    Jl   _ „A      „5   _ „7      „6   _ „8        (n\ 
°22 — °22 °22 — °22J   °22 — °22'   °22 — °22      V1) 

»33 — GZZi   "33 — a33>   °33 ~ °33=   "33 — °33     V>) 

where the subscripts denote stress components 
along the axes shown in Figure 1, and the super- 
script indicates the subcell number. Only normal 
stress components are considered in these equa- 
tions. Similar equations can be written for shear- 
ing stress components. However, it is assumed that 
each subcell material is orthotropic or isotropic so 
that normal stress/strain components are not cou- 
pled with shear components. Thus, the present 
development is only for the normal components 
of stresses/strains. A similar development can be 
made for shearing stresses/strains. 

It is assumed that subcells satisfy the following 
strain compatibility: 

hAx + in — *o^n + 'm^i «ro«n — 'pcll T 'men 

'p£22 "I" 'mc22 — ^Pe22 "^ 'mf22 
='pe22 "t" 'mf22 = V>£22 + 'me22 

(4) 

(5) 

^>£33 + ^ne33 — 'pe33 + 'me33 
= 'p€33 + ^71^33 = ^p^33 + ^£33 (6) 

in which 
1    _ V 1/3 Ip —   Vp (7) 

(8) 
and Vp is the particle volume fraction of a compos- 
ite. 

Each subcell has the constitutive equation 

$ = q;-„<7& + c$A0 (9) 
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in which <*£ is CTE of the nth sub cell, either the 
particle or the matrix. For an isotropic material 
aij — ^'i0" ™ which S{j is the Kronecker delta. 
Further, A6 is a change of temperature from the 
reference value. The subscripts i, j, k, and / 
vary from 1 to 3 while the superscript n changes 
from 1 to 8 for the present development, otherwise 
mentioned. Premultiplying both sides of Equation 
(9) by inverse of C~hl yields 

where 

_n    pro     _n       _n 
aij — &ijkl€kl - Tij 

rpj = ^«oftA* 

(10) 

(11) 

and Ejjkl denotes the inverse of Cfjkl. 
The unit-cell stresses and strains are obtained 

from the volume average of subcell stresses and 
strains. In other words, 

^• = £^S 
n=l 

^ = £^3 
n = l 

(12) 

(13) 

Here, Vn is the volume fraction of the nth subcell, 
and äij and ey- are the average unit-cell stresses 
and strains, respectively. These are the effective 
stresses and strains of a composite. Further, the 
constitutive equation of the effective stresses and 
strains is 

c»j = Cijki&ki + äijAO (14) 

in which Cy« and äy denote the effective mechani- 
cal and thermal material properties of a composite, 
respectively. 

Algebraic manipulation of above equations re- 
sults in the following matrix equation: 

{e} = [R]{f} = [Ä!j{Ar} + [R2){e} (15) 

where {e} is the vector consisting of three normal 
strain components of eight subcells. Vector {/} is 
composed of three subvectors as given below: 

{f}T = {{Arf {0}7 {e}T} (16) 

where {Ar} is the column vector of 12x1 contain- 
ing components rg, and {0} is the null vector of 
9x1, and{e} is the vector of 3x1 consisting of three 
effective, normal strains. Further, 

[R}=[[R1]    [0]   [R2] (17) 

24x12  24X9   24X3 

The effective mechanical property matrix is com- 
puted from 

[E] = [V][E][R2] (18) 

and the effective thermal property matrix is ex- 
pressed as 

{5} = -[E]-
1
[V]([E][R1]{AT} - {r})/A6   (19) 

in which [E] is the matrix consisting of E?jkl and 
vector {T} consists of r£. [V\ is the matrix com- 
posed of subcell volume fractions. Equation (18) 
indicates that the effective mechanical property is 
independent of thermal properties of subcells as ex- 
pected. However, the effective thermal property is 
a function of mechanical as well as thermal prop- 
erties of subcells as seen in Equation (19). The 
micro-thermal stresses at the subcells are computed 
as 

{a} = [EKjR^iAr} + [R2){ä}A6) - {r}    (20) 

3. Results and Discussion 

A parametric study was conducted using an or- 
thogonal array adopted in Taguchi's method [3] in 
order to determine the effects of each parameter 
of the constituent materials on the effective CTE's 
and micro-thermal stresses. The concept of orthog- 
onality refers to the statistically independent or 
balanced parameters that make up the columns of 
the orthogonal array [3]. 

The variables used in the parametric study were 
elastic moduli, Poisson's ratios, CTE's of the con- 
stituent materials, and the particle volume fraction. 
Table 1 shows the variables. The full factorial anal- 
ysis requires 625 cases. Instead, using an orthog- 
onal array of £25(5^) requires 25 analyses for the 
parametric study. Here, subscript of L, '25', rep- 
resents the total number of cases, '5' denotes the 
number of levels, and '6' denotes the number of fac- 
tors. This array is most suitable for the parameters 
given in Table 1. 

For each case of the orthogonal array, the effec- 
tive CTE and matrix thermal-stress were computed 
from the micromechanical model and the finite el- 
ement analysis. The Rule Of Mixture (ROM) was 
also used to predict the effective CTE. The errors 
in the micromechanical model were less than four 
percent compared to the finite element results. On 
the other hand, ROM resulted in errors upto 16 
percent. While the micromechanical model yielded 
relatively uniform errors, ROM resulted in a wide 
variation of errors. The ROM error was large when 
the matrix was much softer than the particle, the 
difference of the CTE's of the constituents was 
large, or PVF was large. 

Figure 2 illustrates the effective CTE normal- 
ized with repspect to the matrix CTE value. These 
graphs indicate the average effect of a single param- 
eter over the variations of other parameters on the 
effective CTE value as expressed in the orthogonal 
array. The top left graph in Figure 2 indicates that 
the normalized, effective CTE is large when the 
modulus ratio is close to 1. However, the normal- 
ized, effective CTE became the minimum for the ra- 
tio of E"/Em=100, where superscripts 'p' and 'm' 
denote the particle and the matrix, respectively. A 
further increase of the modulus ratio increased the 
effective CTE. The CTE's of the constituents af- 
fected the effective CTE almost linearly. Similarly, 
PVF resulted in a linear variation of the effective 
CTE. 
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Figure 1. Micromechanical Model 

The errors in micro-thermal stresses between the 
micromechanical and finite element results were 
compared. The average error was less than about 
six percent except for the case with a low PVF 
value of 0.2, which had a 10 percent error. 

Figure 3 shows the plots of the matrix thermal 
stresses normalized with respect to the matrix elas- 
tic modulus. These stresses were computed for a 
unit degree of temperature change. The stress plots 
used absolute values when computing average val- 
ues based on the orthogonal array. When compar- 
ing Figure 3 to Figure 2, the case with a smaller 
effective CTE value resulted in a greater thermal 
stress in the matrix. This observation was con- 
sistent for every parameter. The smaller effective 
CTE can be caused by a greater constraint from 
free deformation between the particle and the ma- 
trix. A greater constraint results in a larger ther- 
mal stress at the microlevel. When the modulus 
ratio was 100, the matrix thermal stress was the 
maximum but the effective CTE became the min- 
imum. A larger difference in the constituent CTE 
values caused a greater thermal stress, as expected. 
Further, an increased PVF yielded a larger ther- 
mal stress, too. As far as the magnitude of the 
thermal stress was concerned, the CTE yielded the 
largest variation, as expected. The next largest 
variation resulted from PVF. On the other hand, 
elastic modulus ratios and Poisson's ratios varied 
the thermal stress in a less amount. 

4. Conclusions 

An analytical, three-dimensional, micromechan- 
ical model was developed to compute effective 
CTE's and micro-thermal stresses of particulate 
composites using constituents' mechanical and 
thermal properties. A simplified, unit-cell model 
was used for this purpose. The predictions ob- 
tained from the micromechnical model compared 
very well with the finite element results for both 
effective CTE values and micro-thermal stresses. 
The orthogonal array technique was adopted for a 
parametric study of particulate composites.  This 

method showed average effects of each parameter 
over wide variations of other parameters on the ef- 
fective CTE and micro-thermal stress in the matrix 
material. 
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Table 2. Variables for Orthogonal Array 

Level Modulus Pois. Ratio CTE PVF 

No. Ep/Em Vp/l/m a?/am 

1 1 0.20/0.36 0.10 0.20 

2 10 0.24/0.26 0.25 0.35 

3 102 0.28/0.36 0.50 0.50 

4 103 0.32/0.36 0.75 0.65 

5 104 0.36/0.36 1.00 0.80 

* Superscripts p and m denote the particle and 
the matrix, respectively. 
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Figure 3. Variation of Average Matrix Theraml Stresses Computed Based on the Orthogonal 
Array, Normalized With Respect to the Matrix Elastic Modulus 
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This paper examines the thermal stresses and strains induced in unit cubes of a 33 volume 
percent continuous-fiber (silicon carbide, SCS6) reinforced titanium Metal Matrix (Ti-15-3) 
Composite (MMC). Stand-alone matrix material is also analyzed as a baseline of comparison. 
Each cube is exposed to a fixed heat flux on one face with the opposite face held at a fixed low 
temperature. Other faces are insulated and all faces are forced to remain parallel. Each cube is a 
sub-element of a much larger non-warping structural element. A comprehensive range of ply lay- 
ups and heat flux orientations are analyzed. Results are presented for global continuum- arid local 
micro-mechanics linear elastic analyses. For every one of the 11 composite architectures studied, 
the micromechanical strains in the matrix in every direction exceed the maximum strains in the 
stand-alone matrix by approximately a factor two (75 to 118%). The combination of large thermal 
strains acting in very weak directions within MMCs is expected to reduce their thermal fatigue 
resistance far below that of monolithic materials. 

Key Words: thermal stress, thermal strain, 
elements 

1. Introduction 

The potential structural benefits of unidirectional, 
continuous-fiber, metal matrix composites (MMCs) are 
legendary. Compared to their monolithic matrices, 
unidirectional MMCs possess superior properties such 
as higher stiffness and tensile strength, and lower 
coefficient of thermal expansion. Additionally, MMC 
density will be lower if the fibers are less dense than 
the matrix they replace. Their potential has been 
demonstrated unequivocally both analytically and 
experimentally, especially at ambient temperatures. 
Successes prompted Nationally funded efforts within 
the United States and elsewhere to extend the promise 
of MMCs into the temperature regime wherein creep, 
stress relaxation, oxidation, and thermal fatigue 
damage mechanisms lurk. This is the very regime for 
which alternative high-temperature materials are 
becoming mandatory, since further enhancement of 
state-of-the-art monolithic alloys is rapidly approaching 
a point of diminishing returns. Unfortunately, MMCs 
offer but limited improvement in creep, relaxation, and 
oxidization resistance, since these are governed largely 
by the matrix material per se, and the matrix is still 
very much in evidence in the MMC. More seriously, 
however, MMCs are at a distinct disadvantage over 
their monolithic matrix counterpart when it comes to 
resisting damage induced by repeated thermal cycling 
between ambient temperature and maximum service 
operating temperatures.   As will be shown, thermal 

metal matrix composites, thermal fatigue, finite 

cycling is the Achilles' heal of MMCs owing to the 
large internal thermal stresses and strains that develop 
in the constituent matrix and fibers because of then- 
significant mismatch in thermal expansion a. A 
thermal expansion mismatch is inherent provided a 
mismatch in matrix/fiber moduli of elasticity is a 
desired characteristic. This is to be expected (see 
Halford(1>) from the Grüneisen equation that inversely 
relates a to bulk modulus of elasticity K. Bulk and 
Young's moduli E are linearly related. 

a   oc   (YQ/3EV) (1) 
where v is Grimeisen's constant that is related directly 
to the sum of the two powers in the equations for die 
attractive- and repulsive-force versus atomic spacing, 
Cv is the specific heat, and V is the molar volume. 

• Organic 

■ Metallic 

O Ceramic 

10 100 1000 
E, HPMPa 

Fig. 1. Inverse relation between thermal expansion 
coefficient, a, and Young's modulus of elasticity, E. 

Data from Richards®. 
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Figure 1 depicts the inverse relation between 
thermal expansion and elastic modulus for three major 
classes of materials; organic, metallic, and ceramic®. 
The more disparate are the values of the moduli 
between fiber and matrix, the greater the thermal 
expansion mismatch and hence the greater will be the 
thermal stresses and strains for a given thermal 
excursion. 

The current analytic research examines the 
thermal stresses and strains in unit cubes of MMCs 
induced by exposure of one face to a heat flux, Q, and 
the opposite face to a fixed temperature heat sink. 
Faces parallel to the x-direction heat flux were 
assumed insulated to make the analyses more tractable. 
A comprehensive range of simple ply lay-ups and heat 
flux orientations are analyzed. The objective is to 
determine the severity of thermally induced stresses 
and strains in MMCs and imply their potential impact 
on the thermal fatigue resistance of MMCs. 

2. Material, Properties, Composite Cubes 

Continuous fiber (silicon carbide, SCS6, 33% by 
vol.) reinforced titanium matrix (Ti-15-3) composites 
were analyzed. The temperature-dependent, time- 
independent material properties of the constituent 
materials (Table 1) were used in METCAN0' to 
compute discrete ply properties as a function of 
temperature (Halford and Arya(4)). These properties 
are shown in Table 2. The composite cubes consist of 
symmetric 12 ply lay ups with each ply having the 
dimensions 0.262 x 0.262 x 0.022 cm. Several 
laminated architectures were selected to represent the 
extreme combinations of plies relative to the x- 
direction of heat flux, Fig. 2. One of the 12 cubes 
represents the stand-alone matrix material (Case 0). 
Four distinct laminate lay-ups (I, n, IE, and IV) are 
positioned in three orientations (A-B-C) relative to the 
heat flux Q in the negative x-direction. Because Case 

Table 1 - Mechanical and thermal properties of constituents 

Temp. °C 20 130 240 350 460 570 680 790 900 

E 8.98 8.88 8.79 8.68 8.58 8.47 8.36 8.23 8.11 

Fiber u 0.1898 0.1878 0.1857 0.1835 0.1813 0.1790 0.1766 0.1741 0.1715 

a 0.1512 0.1546 0.1579 0.1616 0.1655 0.1695 0.1739 0.1786 0.1836 

E 1.78 1.67 1.56 1.44 1.30 1.15 0.98 0.78 0.48 

Matrix u 0.3196 0.3005 0.2802 0.2582 0.2342 0.2075 0.1768 0.1395 0.0875 

a 0.2503 0.2609 0.2733 0.2811 0.3063 0.3298 0.3622 0.4160 0.5278 

E: Young's modulus, xlO6 MPa o: Poisson's ratio a: Coefficient of thermal expansion, xlO"5 °C"1 

Table 2- Orthotropic properties of the composite plies 

T OC 20 130 240 350 460 570 680 790 900 

Ell 2.6600 2.5200 2.3600 2.2200 2.0200 1.8100 1.5700 1.2600 0.8200 

E22 4.1600 4.0600 3.9500 3.8300 3.7100 3.5700 3.4200 3.2400 3.0000 

v12 0.1768 0.1634 0.1492 0.1342 0.1180 0.1004 0.0810 0.0588 0.0313 

V23 0.2768 0.2633 0.2490 0.2336 0.2167 0.1981 0.1767 0.1509 0.1152 

v31 0.3038 0.2874 0.2697 0.2504 0.2290 0.2049 0.1768 0.1417 0.0911 

G12 1.0210 0.9670 0.9080 0.8450 0.7440 0.6940 0.6000 0.4820 0.3110 

G23 1.0210 0.9670 0.9080 0.8450 0.7440 0.6940 0.6000 0.4820 0.3110 

G31 1.0180 0.9770 0.9310 0.8800 0.8200 0.7510 0.6600 0.5520 0.3740 

ail 0.2096 0.2170 0.2254 0.2352 0.2471 0.2620 0.2820 0.3128 0.3786 

«22 0.1797 0.1829 0.1864 0.1899 0.1936 0.1974 0.2009 0.2039 0.2034 

E = Young's modulus, xlO6 MPa v = Poisson's ratio  G 
a = Coefficient of thermal expansion, x 10"5 "C"1      E» = 

= Shear modulus 
■ Ü33    CC22= 0133 
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Heat Flux Q 

IV-A IV-C 

Fig. 2. Indexing scheme for describing ply lay-up 
architecture of composite cubes. Heat flux, Q, in 

negative X direction. 

IA is equivalent to Case IC, Case IA is dropped and 
Case 0 is shown in its place. The Case indexing 
scheme follows a progression from a thick center 
laminate with no laminate faces (I) to a thin enter 
lammatp and thick laminate faces (TV). 

(a) Continuum model 
for composite cubes 

(b) Mfcro-medMnfcal model 
for fSbet/iuitriz imil cell 

Fig. 3 Finite element models. 

element. Consequently, parallel faces in both models 
were forced to remain parallel during thermal loading. 
The elastic analyses enable generalization of results to 
other ranges of thermal cycling. Sensitivity studies 
conducted by independently varying a and E permits 
extrapolation of results to other MMC systems with 
different combinations of expansion and moduli values 
(see for example, Halford and Arya(4)). In the current 
analyses, all of the computed stresses and strains are 
viewed as ranges for the case of slow, quasi-static, 
cyclic thermal loading between the minimum and 
maximum temperatures. Rapidly applied thermal 
transients would increase the thermal stresses and 
strains in the composite cubes to a greater extent than 
for the stand-alone matrix cube owing to the lower 
thermal conductivity of the composite. 

4. Results 

3. Thermal Loading and Finite Element Analyses 

Each cube was thermally loaded with 
temperature rising slowly from 21°C to a maximum on 
the heated face while the opposite face was maintained 
at 21°C. Only steady-state thermal conditions were 
analyzed. Side faces were insulated. Maximum 
temperatures for the stand-alone matrix and composite 
cubes were determined by assuming both to be 
subjected to the same heat flux. For the arbitrarily 
prescribed maYimiim temperature of 800°C for the 
stand-alone matrix, thermal conductivity calculations 
based on a constant heat flux resulted in a maximum 
temperature of 910°C for the composite cubes owing to 
their lower thermal conductivity. Both continuum 
(Unit Cube with 1728 elements, 2197 nodes) and 
micromechanical (Unit Cell with 3072 elements, 3689 
nodes) elastic finite element structural analyses were 
performed using MARC(S) with 8-noded, solid 
hexagonal elements, Fig. 3. The micromechanical 
model is a sub-element of the continuum model which 
in turn is a sub-element from a larger non-warping 

Thermal stress results for the stand-alone matrix 
(Case 0) are shown at the far left of Fig. 4. The 
maximum thermal stress range for this Case is 428 
MPa(62ksi) in the transverse (y and z) directions. 

0      «   K   M    M   K   1U   m-Bm-C IV-A IV-B IV-C 

MMC Architechtures 

Fig. 4 Thermal stress ranges in composite cubes 
using continuum model. 
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Similarly, the maximum mechanical component of the 
thermally induced train range is 0.48 % acting in the 
transverse directions (see far left of Fig. 5). Figure 4 
also displays the maximum continuum stress range 
(and corresponding orthogonal stress ranges) found in 
each of the 11 composite Cases. The location of the 
maximum stress ranges are shown by the big X in Fig. 
2. In every composite Case, every transverse stress 
range is greater than the maximum stress range in the 
stand-alone matrix material (Case 0). The maximum 
ranges are always at the cube face whose temperature 
cycled between the maximum and the minimum. The 
most benign Case (I-B) has a stress range 25% higher 
than that found in Case 0. Unfortunately, the direction 
of this high stress range is perpendicular to a fiber; the 
weakest possible direction in any composite. 
Combining the highest thermal stresses with the 
weakest directions will invariably give rise to much 
poorer thermal fatigue resistance than the stand-alone 
matrix, thereby negating any potential structural 
benefit of the composite for components loaded 
appreciably by thermal cycling. The extent of the 
poorer performance, while not experimentally 
evaluated herein, is indicated by the observations of 
others. For example, tensile strengths of [90] 
composites are well known to be considerably less than 
the tensile strength of stand-alone matrix material, and 
isothermal fatigue strengths of [90] composites can be 
as low as 10% of [0] fatigue strengths, Hashin and 
Rotem(6>. Furthermore, the thermal fatigue resistance 
of composites is expected to be even less than their 
isothermal fatigue resistance (Halford, Lerch, and 
Saltsmanc7)). To better understand why this can be so, 
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Fig. 5 Mechanical component of thermally induced 
strain ranges in matrix portion of unit cell using 

micro-mechanical model. 

it is necessary to examine the thermal stresses and 
strains in the composite using a micromechanical 
structural analysis (Fig. 3). Figure 5 shows the 
mechanical component of the cyclic thermal strain 
range developed within the matrix material for each of 
the 11 composite Cases. Comparable maximum strain 
ranges are also shown for Case 0 for comparison.  In 

every Case, every strain range in every direction is 
higher than the maximum strain range in the stand- 
alone matrix material by 35 to 110%. Furthermore, 
the maximum strain ranges are always in a direction 
transverse to the local fiber direction. 

5. Conclusions 

The analytic results presented herein clearly 
demonstrate the extraordinarily large thermal stresses 
and strains that can be suffered by continuous-fiber 
reinforced metal matrix composites. The highest 
thermal stresses and strains are normal to the fibers; a 
notoriously weak direction. High stresses and strains 
in conjunction with weak directions are expected to 
severely limit the application of MMCs in structural 
applications involving appreciable thermal cycling. 
The broad range of ply lay-ups studied bounds the 
possible MMC architectures that could have been 
selected. For the same heat flux, none of the 
architectures offer a potential thermal fatigue resistance 
higher than the matrix material itself. Thermal fatigue 
resistance is not one of the structural advantages of 
metal matrix composites. 
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1. Introduction 

Reliable evaluation of thermally induced 
deformations and stresses in components made of 
polymer composites in the form of plates and 
shells is important in the assessment of 
performance of the components. The growing 
applications of new composite materials especially 
in thermal environment have encouraged 
development of improved and refined analytical 
models for ultimate analysis. While studies in the 
aspects of mechanical behavior of advanced 
composites are extensive, very investigations have 
been carried out to-date few studies are available on 
their thermo-elastic behavior. 

The three-dimensional (3D) analyses of 
laminates with a large number of laminae becomes 
intractable [l]-[3]. Researchers have, therefore, 
focused their attention on 2D theories. Noor and 
Burton [4,5] have identified four general 
approaches for constructing 2D theories: method 
of hypotheses, method of expansion, asymptotic 
integration technique and iterative methods. 

Of these the method of hypotheses is a 
popular and general one for constructing 2D theories. 
An individual layer (lamina), for mathematical 
modeling purposes, is considered to be 
homogeneous and orthotropic (and thus the 
material properties are assumed to remain constant 
in each layer) while the laminate is heterogeneous 
through the thickness and generally anisotropic. 
The greater differences in the elastic properties 
between fiber filaments and matrix materials lead 
to a high ratio of in-plane Young's modulus-to- 
transverse shear modulus for most of the 
composite laminates fabricated to-date. 

The classical lamination theory (CLT) is an 
extension of the Kirchhoff s thin plate/Love's thin 
shell theory and neglects the effects of out-of- 
plane strains and assumes each lamina to be in a 

state of plane stress. It is observed that the CLT 
fails to predict accurately the static and dynamic 
response in case of composite laminates which are 
rather thick and /or exhibit high anisotropy ratios. 
Most importantly, it is found to be totally unsuitable 
for most sandwiches with high shear flexible cores. 
The very physical nature of a laminate makes 
transverse deformation significant. Thus the CLT is 
not suitable for modelling of laminates. 

Theories which include the effects of 
transverse shear deformation energy and at times 
the transverse normal strain energy become 
necessary. The so-called first-order shear 
deformation theories (FOST) of Reissner [6] and 
Mindlin [7], based on assumed stress and 
displacement fields respectively, do remove some of 
the defects of the CLT. However, these too neglect 
the effects of transverse normal strain and assume a 
constant transverse shear strain through the 
laminated thickness. A shear correction coefficient, 
which is somewhat arbitrary, is thus used to correct 
the transverse shear strain energy of deformation. 
Transverse shear deformation assumes greater 
significance for fiber reinforced laminates and 
sandwiches, as compared to homogeneous plates 
and shells, due to large ratio of longitudinal elastic 
modulus to the transverse shear modulus. 

The limitations of the FOSTs forced 
development of higher-order shear deformation 
theories (HOSTs) [8]-[14] which provide greater 
displacement accuracy and include the 
considerations of realistic parabolic variation of 
transverse shear stresses through the laminate 
thickness, warping of the transverse cross-sections 
and a few models do consider the complete 3D 
material constitutive law. 

Kant and Khare [15] have recently used a 
nine degrees of freedom HOST in conjunction with 
a finite element technique for the thermal analyses 
flat laminates. In this presentation, we generalize 
the approach and develop a new flat facet element 
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for general curved laminates in addition to 
obtaining a few closed-form solutions with 
HOSTs. 

2. Theory 

Analytical models based on higher-order 
displacement field [15]: 
HOST 12 

u = u0 + zGy + Z2
UQ + z38y 

v = vo-z0x +Z
2
VQ-Z

3
6X (l) 

w = w0 + z82 + z2 WQ + z38* 
and two other models with changes in w, 
HOST 11 

W = w0+zGz+Z2wJ (2) 
and HOST 9 
W = w0 (3) 
and the popular FOST based on, 

u = u0+zey;v = v0-zex;w = w0       (4) 
are developed and utilized here for general curved 
laminates. Starting from 3D elasticity equations 
proper material constitutive relations are taken as 
it is and 2D forms of strain-displacement relations 
are derived in a straight forward manner with help 
of Equations (1) - (4). 2D variatonally consistent 
equilibrium equations and associated boundary 
conditions are derived using virtual work principle 
[11]. 

3. Results and discussion 

Closed-form solutions for simply 
(diaphragm) supported cross-ply laminates and 
discrete solutions for general curved laminates 
using C° isoparametric flat facet quadrilateral 
finite elements are obtained. The formulations are 
first checked and validated by conducting 
numerical experiments on test problems described 
by Belytschko et al. [16] under mechanical 
loadings as pure 3D thermoelasticity solutions are 
scanty in literature. Numerical results on thermal 
problems analyzed by Khdeir et al. [17] and He 
[18] are presented in Tables 1 -3. 

In addition, thermal effects are studied on 
new problems analyzed involving sandwich plates 
and shells both analytically and numerically. The 
difference between HOSTs and FOST is seen in 
low a/h ratios. This difference is more in plates 
than shells. HOST 12 results are closest to the 3D 
elasticity solutions. 
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Table L. Center deflections of simply (diaphragm) supported cross-ply shells subjected to sinusoidal thermal load 
R/a Present Closed Form Present Finite Elements Khdeir et al [17] 

HOST12 HOST11 HOST9 FOST HOST12 HOST 
9 

FOST HSDT FSDT CST 

Cylindrical shell (0790°) with a/b=l, h/a=0.1, Rj= », R2 = R 

5 1.1261 1.1261 1.1279 1.1272 1.1260 1.1278 1.1279 1.1235 1.1248 1.1280 
10 1.1434 1.1434 1.1449 1.1444 1.1460 1.1468 1.1473 1.1421 1.1439 1.1447 
50 1.1493 1.1493 1.1507 1.1501 1.1482 1.1501 1.1501 

Spherical shell (0790°) with a/b=l, h/a=0.1, Rx= R2 = R 

5 1.0588 1.0588 1.0602 1.0578 1.0490 1.0553 1.0514 1.0545 1.0546 1.0660 
10 1.1256 1.1256 1.1269 1.1258 1.1290 1.1304 1.1302 1.1235 1.1248 1.1280 
50 1.1487 1.1487 1.1500 1.1493 1.1475 1.1493 1.1494 

Plate 1.1497 1.1497 1.1510 1.1504 1.1470 1.1477 1.1478 1.1485 1.1504 1.1504 
Ten layer cylindrical shell (07907 ) with a/b=l, h/a=0.1, Rj= », R2 = R 

5 1.0224 1.0224 1.0239 1.0234 1.0190 1.0203 1.0204 1.0216 1.0215 1.0247 
10 1.0299 1.0299 1.0312 1.0307 1.0280 1.0293 1.0294 1.0303 1.0302 1.0310 
50 1.0325 1.0325 1.0337 1.0330 1.0332 1.0330 1.0331 

Plate 1.0326 1.0326 1.0339 1.0331 1.0320 1.0329 1.0328 1.0333 1.0331 1.0331 

Table 2. Deflection and stress in a diaphragm supported symmetric cross-ply (079070°) square laminate under 
sinusoidal thermal load 

a/h Present Closed Form Present Finite Elements 
Quantity HOST12 HOST11 HOST9 FOST HOST12 HOST11 HOST9 FOST HE [18] 

w 1.0823 1.0823 1.0874 1.0763 1.0832 1.0832 1.0874 1.0763 1.0904 
e£(z=-h/6) 0.6628 0.6628 0.6616 0.6556 0.6614 0.6614 0.6602 0.6544 0.6712 
Öj| (2=4/6) 0.3024 0.3024 0.2736 0.1357 0.2762 0.2762 0.2484 0.1112 0.4776 
ÖjJ (2=*/2) 0.0122 0.0122 0.0826 0.4072 -0.5048 -0.5048 0.0110 0.3362 0.1478 
c£ (z=-h/6) -0.8550 -0.8550 -0.9838 -1.0208 -0.9914 -0.9914 -1.0108 -1.0472 -0.8265 

5 e£ (z=-h/2) 1.8538 1.8538 1.8590 1.8618 1.8494 1.8494 1.8556 1.8580 1.8450 

fiy(z-h/2) 1.0814 1.0814 1.0786 1.0722 1.0884 1.0884 1.0818 1.0754 1.0850 
^(2=4/6) 0.1263 0.1263 0.1272 . 0.0795 0.1471 0.1471 0.1335 0.0864 0.0844 
*xz (2=0) 0.1433 0.1433 0.1448 0.0795 0.0676 0.0676 0.0612 0.0346 0.0674 
x^iz^b/6) -0.1055 -0.1055 -0.1046 0.1060 -0.1007 -0.1007 -0.0958 0.0987 -0.1094 
*xz (2=0) -0.0414 -0.0414 -0.0409 0.0424 -0.1022 -0.1022 -0.0934 0.0395 -0.0480 

W 1.0489 1.0489 1.0501 1.0460 1.0490 1.0490 1.0501 1.0460 1.0517 
6* (z=-h/6) 0.3308 0.3308 0.3306 0.3296 03302 0.3302 0.3300 0.3290 0.3325 
Ö5J(z=-h/6) 0.0581 0.0581 0.0540 0.0282 0.0447 0.0447 0.0404 0.0163 0.0960 
eg (z=-h/2) 0.0165 0.0165 0.0266 0.0847 -0.0143 -0.0143 -0.0476 0.0490 0.0361 
c£ (z=-h/6) -0.1590 -0.1590 -0.1630 -0.1621 -0.1706 -0.1706 -0.1741 -0.1719 -0.1436 

10 c£ (z=-h/2) 0.9705 0.9705 0.9712 0.9715 0.9699 0.9699 0.9704 0.9700 0.9690 

T^,(2=*/2) 0.5192 0.5192 0.5188 0.5178 0.5212 0.5212 0.5205 0.5194 0.5200 
^(z-fa/6) 0.0433 0.0433 0.4336 0.0262 0.0524 0.0524 0.0516 0.0330 0.0293 
Xx2(2=0) 0.0497 0.0497 0.0498 0.0262 0.0237 0.0237 0.0233 0.0132 0.0250 

^(z-h/6) -0.0355 -0.0355 0.0355 0.0349 -0.0277 -0.0277 -0.0110 -0.0113 -0.0316 

M*=o) -0.0144 -0.0144 0.0144 0.0140 -0.0281 -0.0281 -0.0276 -0.0281 -0.0234 
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Table 3. Deflection and stress in a diaphragm supported antisymmetric cross-ply (0790°) square laminate under 
sinusoidal thermal load 

a/h Present Closed Form Present Finite Elements 
Quantity HOST12 HOST11 HOST9 FOST HOST12 HOST11 HOST9 FOST HE [18] 

w 1.1478 1.1478 1.1530 1.1504 1.1501 1.1498 1.1530 1.1504 1.1557 
^(z=0) 0.0657 0.0657 0.0676 0.0700 0.0656 0.0656 0.06784 0.0702 0.0589 

ö£ (z=h/2) -1.7096 -1.7096 -1.7114 -1.7654 -1.7060 -1.7058 -1.7074 -1.7610 -1.6956 
5^(2=0) 2.2160 22160 2.2320 2.3100 2.2140 2.2160 2.2380 2.3160 1.9444 

^| (z=-h/2) -0.2410 -0.2410 -0.1818 -0.6148 -0.2928 -0.2946 -0.2562 -0.6930 -0.3077 
5 c£(z=0) -22160 -2.2160 22320 -2.3100 -2.2140 -2.2160 22380 -2.3160 -1.9444 

«£(z=h/2) 02410 02410 0.1818 0.6148 0.2928 0.2948 02562 0.6930 0.3077 
^(z=h/2) -1.1576 -1.1576 -1.1556 -1.1354 -1.1714 -1.1704 -1.1592 -1.1388 -1.1653 
txz (2=0) -0.0365 -0.0365 -0.0354 - -0.0108 -0.0138 -0.0262 -0.0076 -0.0740 
T^ (2=0) -0.0365 -0.0365 -0.0354 - -0.0108 -0.0138 -0.0261 -0.0076 -0.0740 

W 1.1497 1.1497 1.1510 1.1504 1.1497 1.1497 1.1508 1.1502 1.1519 
c£(z=0) 0.0339 0.0339 0.0347 0.0350 0.0339 0.0339 0.0348 0.0350 0.0334 

e^(2=h/2) -0.8748 -0.8748 -0.8753 -0.8827 -0.8741 -0.8741 -0.8742 -0.8809 -0.8728 
3<Z=0) 1.1430 1.1430 1.1450 1.1550 1.1450 1.1450 1.1470 1.1550 1.1032 

10 oil (z=-h/2) -02547 -0.2547 -0.2460 -0.3074 -0.2856 -02856 -0.2785 -0.3433 -02638 
5*(z=0) -1.1430 -1.1430 -1.1450 -1.1550 -1.1450 -1.1450 -1.1470 -1.1550 -1.1032 

e^(z=h/2) 02547 0.2547 02460 0.3074 0.2856 0.2856 02785 0.3433 02638 
^(z=h/2) -0.5707 -0.5707 -0.5704 -0.5677 -0.5737 -0.5735 -0.5722 -0.5694 -0.5719 
t« (z=0) -0.0104 -0.0104 -0.0103 - 0.0006 0.0002 -0.0011 -0.0149 -0.0210 

| V (z=0) -0.0104 -0.0104 — -0.0103 - 0.0006 0.0002 -0.0011 -0.0149 -0.0210 
Sup erscnpts 1 and 2 refer t o layer num >ers measi ired from z = -h/2. 
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Graphite/PEEK Composite Laminates 
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A numerical model is developed for prediction of the process-induced thermal residual 
stresses in thermoplastic composite laminates. The model addresses the development of the 
residual stress state in fracture-critical free-edge regions as well as through-thickness stress vari- 
ations. The current approach provides a unique capability for the investigation of the influence 
of thermal processing and structural parameters on the resulting buildup of residual stresses 
during manufacturing. Therefore, it can assist in the design and analysis of thermoplastic com- 
posites to tailor mechanical and strength characteristics. Thermal processing considered here 
includes solidification from the molten state at a specific surface cooling rate, and application 
of a posterior annealing cycle. A significant reduction in the free-edge stresses was obtained 
via a quench/anneal cycle in comparison to the recommended nominal cooling from the melt. 
Results are shown for the case of a quasi-isotropic APC-2 (graphite/PEEK) laminate. 

Key Words: Residual Stress, Free Edge Stress, Processing, Thermoplastic, APC-2. 

1. Introduction 

The elevated processing temperatures and 
the large matrix/fiber thermoelastic property mis- 
match in thermoplastic composites may result in 
the development of thermal residual stresses of 
significant magnitude [1]. These process-induced 
stresses can considerably reduce the static and fa- 
tigue strength of the laminate, and can possibly 
lead to premature failures such as transverse matrix 
cracking, fiber buckling and inter-ply delamination. 
In particular, thermal residual stresses are critical 
in the vicinity of free edges, where high and local- 
ized interlaminar stresses arise. In addition, matrix 
crystallization during processing of semi-crystalline 
thermoplastics causes a large volumetric shrinkage 
which serves as an additional source of residual 
stress. As crystallization is strongly controlled by 
processing conditions, the resulting mechanism of 
stress buildup is also dependent upon processing 
parameters, such as the cooling rate from the melt 
and the annealing temperature [2]. 

As a result, prediction of the process-induced 
residual stresses is very important in relation to 
the design and performance of composite struc- 
tures. Several studies which deal with modelling 
of the residual stress development during process- 
ing of thermoplastic laminates have been reported 
in the literature (a review of these models can be 
found in [3]). These studies utilize classical lami- 
nate theory as the basis for the residual stress anal- 

tPresently at deHavilland Inc., Garratt Blvd., Mail Stop 
N18-06, Downsview, Ontario, Canada M3K 1Y5 

ysis during processing, thus they provide informa- 
tion only about in-plane stress distributions in the 
thickness direction of the laminate. On the other 
hand, the current work presents a model which ad- 
dresses the development of the three-dimensional 
residual stress state in free-edge regions, and in 
particular the interlaminar stress components, as 
well as through-thickness stress variations within 
the laminate. This model enables the investigation 
of the influence of thermal processing and struc- 
tural parameters on the resulting buildup of resid- 
ual stresses within the laminate. Thermal process- 
ing considered in the model includes solidification 
from the molten state at a specific cooling rate, and 
the application of a posterior annealing cycle [2]. 
Annealing is a recommended procedure applicable 
to semi-crystalline thermoplastics for the purpose 
of increasing an existing low level of crystallinity 
in the matrix; this to ensure an adequate environ- 
mental robustness. 

Comparison of the process-induced free-edge 
stress profiles between a recommended nom- 
inal cooling from the melt and a proposed 
quench/anneal cycle is investigated here for a 
quasi-isotropic APC-2 (graphite/PEEK) laminate. 

2. Model Description 

The composite laminate considered in the 
present model is an infinitely-long composite strip 
with finite width 2 W and finite thickness if, as de- 
picted in Fig. 1. Since the external thermal loading 
can be viewed as uniform over all surfaces of the 
composite strip, both thermal and stress regimes 
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REDUCED SPACE 
DOMAIN 

Figure 1: Reduced Space Domain of the Problem. 

are invariant with the longitudinal direction of the 
structure (r-axis). This characteristic enables the 
reduction of the problem from a three-dimensional 
to a two-dimensional domain represented by the 
cross-sectional area of the laminate. This ap- 
proach is referred to as Uniform Axial Extension 
[4]. Although the spatial domain of the problem is 
two dimensional, the stress analysis remains three- 
dimensional, as all displacement, strain and stress 
components are present in the formulation. 

The model developed here consists of (1) a 
thermal analysis to determine the time-dependent 
temperature distribution over the cross-sectional 
area of the laminate, and (2) a quasi three- 
dimensional incremental stress analysis to pre- 
dict the development of process-induced residual 
stresses within the domain. Both analyses are 
solved independently at every instant throughout 
the process using the Finite Element Method, how- 
ever the analyses are coupled through the deter- 
mination of the temperature- and crystallinity- 
dependent thermoelastic properties required for the 
stress calculation. 

As the thermoelastic properties of the mate- 
rial and the volumetric shrinkage experienced dur- 
ing processing are strongly affected by the level of 
crystallinity in the matrix, a crystallization kinetics 
analysis of the non-isothermal crystallinity growth 
is required. Crystalline growth is strongly dictated 
by the thermal history and temperature rates en- 
countered during processing. The non-isothermal 
crystallization kinetics model of Velisaris and Se- 
feris [5] is implemented in the present study. De- 
termination of the laminate's thermoelastic proper- 
ties as a function of position and time is then per- 
formed. The corresponding properties for semicrys- 
talline composites are derived using micromechan- 
ics models for the amorphous/crystalline and ma- 
trix/fiber systems in association with their respec- 
tive volume fractions [3]. 

The stress analysis is based on an Uniform 

Axial Extension incremental displacements ap- 
proach using the Finite Element Method, in which 
incremental quantities are calculated and summed 
at each time during the processing. The model 
computes, in fact, changes in displacements, strains 
and stresses at each instant during the processing. 
Thus, implementation of the incremental approach 
enables complete modelling of the residual stress 
variations during processing in both the free-edge 
and through-thickness regions. 

A complete and comprehensive description of 
the various analyses and solution techniques ap- 
plied in the model can be found in [3]. 

3. Results 

A quasi-isotropic (+452, -452,02,902)s 
APC-2 laminate has been investigated for the in- 
fluence of the applied surface cooling rate from the 
molten state (380"C) and of a quench/anneal cycle 
on the free-edge stress profiles at room temperature 
(20°C). The present laminate has been exposed to 
(1) a quench cooling process (Q) at 6000'C/mira 
from the melt; (2) a nominal cool process (NC) at 
30°C/min from the melt; and (3) a quench/anneal 
cycle (Q/A) at 225°C for 1 minute. The discussion 
here concentrates only on the interlaminar stress 
components, while a detailed discussion on the in- 
plane stress components is presented in [3]. 

In order to show characteristic stress profiles, 
the overall room temperature distributions of the 
out-of-plane normal stress <xz and shear stresses 
ryz and rxz for the NC case are presented in Fig. 2. 
At the free-edge region, typical stress concentra- 
tions are developed at the 0/90 and +45/ - 45 
interfaces for the three stress components. At the 
laminate interior region away from the free-edge, 
it is clear that no out-of-plane stresses develop 
through-the-thickness, this being consistent with 
the assumptions in the Classical Laminate Theory. 

The room-temperature free-edge distributions 
of <rz, ryz and rsz at various interfaces are de- 
picted in Figures 3-6, respectively. Considering 
first the influence of cooling rate on the stress pro- 
files, the results for the Q process can be compared 
to those from the NC case. It can be seen that 
the greater the surface cooling rate, the smaller the 
stress levels obtained at room temperature. The 
rationale behind this behavior comes from the fact 
that the cooling rate affects the onset temperature 
of crystallization in APC-2, where stress starts es- 
sentially to build up. The onset of crystallization is 
delayed as the cooling rate is increased [2], thereby 
reducing the temperature interval over which resid- 
ual stresses build up, and resulting in lower stress 
levels at room temperature. In addition, all figures 
demonstrate the localized nature of the free-edge 
effect, where the interlaminar stresses assume sig- 
nificant magnitudes at the edge itself, however they 
level-out at a distance of about 1.0-1.5 times the 
laminate thickness measured in from the free-edge. 

Evident from the results are the very large 
stress levels developed in the NC case and the sig- 
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Figure 2: Room-Temperature Distribution of the 
Normal Stress cz and Shear Stresses ryz and 
rxz in the Cross-Section (First Quadrant) of a 
(+452, -452,02,902)s APC-2 Laminate Cooled at 
30°C/min (nominal cool) from the Molten State. 

nificant stress reduction obtained in the Q process 
for all interlaminar stresses at both the 0/90 and 
+45/-45 interfaces. For az (Figures 3 and 4), val- 
ues ranging from -2 MPa (Q) to 59 MPa (NC), 
and from 18 MPa (Q) to 43 MPa (NC) are ob- 
served at these two free-edge interfaces, respec- 
tively. In relation to the assumed failure stress 
of 80 MPa, these tensile stresses indicate a signifi- 
cant reduction in the Mode-I delamination strength 
of the laminate at these locations. Regarding ryz 
and TXZ (Figures 5 and 6), the critical location 
with respect to delamination are the 0/90 and 
+45/—45 free-edge interfaces, respectively. For 
the former, the stress level ranges from —17 MPa 
to —41 MPa, and for the latter, from 57 MPa to 
98 MPa. Although these shear stress values are be- 
low the corresponding failure stresses of ±80 MPa 
and ±120MPa, respectively [3], they represent 
a considerable reduction in delamination strength. 
All interlaminar stresses vanish as the interior of 
the laminate is approached. 

Although reduced free-edge stresses are ob- 
tained by quenching the laminate in contrast to the 
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Figure 3: Effect of Thermal Process (Quench 
and Quench/Anneal versus Nominal Cool) on the 
Interlaminar Normal Stress az Distribution at 
20"C along the 0/90 Interface of a Quasi-Isotropic 
(+452, -452,02,902)s APC-2 Laminate. 

slow-cool (NC) process, low levels of crystallinity 
are obtained in the rapid cooling process; an inad- 
equate situation with respect to solvent resistance 
requirement and high-temperature retention of me- 
chanical properties. An anneal cycle is then recom- 
mended in order to restore crystallinity, however, 
this results in some increase in the stress levels [3]. 

With regard to annealing effects, results from 
the Q/A cycle can be compared to those from 
the NC process. The Q/A cycle at 225°C for 
1 minute produces almost identical levels of crys- 
tallinity to those obtained in the NC case, 22.69% 
and 23.21%, respectively. This enables the com- 
parison in the stress distributions due exclusively 
to the difference in the crystallization kinetics be- 
tween these processes. It is clear from Figures 3-6 
that the quench/anneal process has significantly re- 
duced the free-edge stress levels for all stress com- 
ponents. The reduced-stress percentages are 83.0% 
and 21.1% for az and ryz at the 0/90 free-edge, 
respectively, and 38.0% and 3.1% for <rz and TXZ 

at the +45/— 45 free-edge. These significant stress 
reductions are of great importance as they delay 
the onset of delamination at the free-edge. Conse- 
quently, an enhancement of the structural perfor- 
mance of the laminate is expected to be achieved. 

4. Conclusions 

A numerical model is developed for prediction 
of the process-induced thermal residual stresses in 
thermoplastic composite laminates. The model ad- 
dresses the development of the residual stress state 
in free-edge regions as well as through-thickness 
stress variations. The model enables the investiga- 
tion of the influence of different thermal processing 
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Figure 4: Effect of Thermal Process (Quench and 
Quench/Anneal versus Nominal Cool) on the In- 
terlaminar Normal Stress erz Distribution at 20°C 
along the +45/ - 45 Interface of a Quasi-Isotropic 
(+452,-452,02,902)s APC-2 Laminate. 
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Figure 5: Effect of Thermal Process (Quench 
and Quench/Anneal versus Nominal Cool) on 
the Interlaminar Shear Stress ryz Distribution at 
20° C along Various Interfaces of a Quasi-Isotropic 
(+452,-452,02,902)s APC-2 Laminate. 

and structural parameters on the resulting buildup 
of residual stresses within the laminate. 

A commonly-used APC-2 laminate configura- 
tion has been analyzed for various cooling rates 
from the molten state and in an annealing cy- 
cle. A significant reduction in the interlaminar 
free-edge stresses was obtained via application of 
a quench/anneal cycle in comparison to the recom- 
mended nominal cool, while maintaining a compa- 
rable and required crystallinity level in the matrix. 
This stress-reduction mechanism can contribute to 
enhanced static and fatigue strength, and therefore 
be beneficial in terms of structural performance of 
the laminate. 

The results from the present study show that 
the present model can assist in the design and 
analysis of these laminates to tailor mechanical 
and strength characteristics. The degree of opti- 
mization offered by this model can therefore be of 
great benefit in terms of performance tailoring and 
weight-saving capabilities. 
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Stress-Focusing Effect in a Solid Cylinder Subjected to Instantaneous 

Heating Based on the Theory of Generalized Thermoelasticity 

X.F. Ding, T. Furukawa and H. Nakanishi 

Department of Mechanical and System Engineering, Kyoto Institute of Technology, 
Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606, JAPAN 

When an isotropic and homogeneous solid cylinder is subjected to instantaneous heating at the 
surface, a stress wave at the surface proceeds radially inward to the center of the cylinder. The 
wave may accumulate at the center and give rise to very large stress magnitudes, even though the 
initial thermal stress is relatively small. This phenomenon is called the stress-focusing effect. In 
this paper, we use the fundamental equations of generalized thermoelasticity which include two 
different theories and treat the effects of these waves by means of the Laplace transform. The 
inversion of the Laplace transform is carried out numerically. The effects of the thermomechanical 
coupling and the relaxation times on the stress-focusing phenomena are examined . 

Key words: Generalized Thermoelasticity, Stress-Focusing Effect, Stress Wave, Cylinder 

1. Introduction 

The analysis of a long cylindrical rod subjected 
to a sudden rise in temperature uniformly over its cross 
section has been studied by Ho [1] and Hata [2]. Due 
to the instantaneous heating, the stress waves reflected 
from the cylindrical surface of the rod may accumulate 
at the center and give rise to very high stresses, even 
though the initial thermal stress is relatively small. 
This phenomenon is called the stress-focusing effect. 

The classical theory of dynamic thermoelasticity 
which takes into account the coupling effects between 
temperature and strain fields involves the infinite 
thermal wave speed. The theory of generalized 
thermoelasticity has been developed in an attempt to 
eliminate the paradox of the infinite velocity of thermal 
propagation. At present, there are two theories of the 
generalized thermoelasticity: the first is proposed by 
Lord and Shulman [3] (L-S theory), the second is 
proposed by Green and Lindsay [4]   (G-L theory). 

In this paper, we treat an isotropic and 
homogeneous infinitely long solid cylinder whose free 
surface is subjected to instantaneous heating. We use 
the  fundamental  equations  of generalized  thermo- 

elasticity introduced by Noda et al. [5] which include 
the L-S theory and G-L theory. The Laplace 
transform technique is used and the inversion is carried 
out numerically. The effects of the thermomechanical 
coupling and the relaxation times on the stress-focusing 
phenomena are examined. 

2. Analysis 

We consider the one dimensional generalized 
thermoelasticity for an isotropic and homogeneous 
infinitely long cylinder of radius b. The cylinder is 
subjected to a sudden uniform temperature rise at the 
free surface. The fundamental equations which 
include the L-S and G-L theories consist of the heat 
conduction equation 

1 K(T,rr + -T,r)-(T + t0T„),t 

S 
to. 

u,r+-+5lkt0(u,r + —),t 
r T 

(1) 

and    the    equation    of   motion    represented    by 
displacement   component 

-u,r-Ar-Ka{T + t{T,r ),r--Tu,tt (2) 
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and the stress-strain-temperature relation 

°n 
■2n + A(«,r+-) 

r 

+ (3k + 2fx)a(T + tlT,t) 

(3) 

Here u, T, o„.,O0g are the radial displacement, 

temperature, radial stress and hoop stress, respectively, 

and A and n are Lame's constants, a is the 

coefficient of linear thermal expansion, K is thermal 

diffusivity,   ve   is the velocity of propagation of 

longitudinal wave, f - (1 + v)I (1 - v), v is Poisson's 

ratio,   to   and   /j   are  relaxation  times,   ö^   is 

Kronecker's delta whose subscript k denotes the 
number of relaxation times, and <5 is coupling 
parameter defined by 

(3A + 2A*)
2
 a2T 

Ö = ■ 
(A + 2fi)pcv 

(4) 

where T is a reference temperature, p is density, cv is 

the specific heat at constant volume. The comma 
indicate differentiation with respect to the independent 
variable indicated. 

Let us introduce the following nondimensional 
variables 

r **   A    T~T0   «      K 

r,-rn veb 

U 
ba(T:-T0) .'u 

Kt0 Iff, 
T'h "TT (5) 

On 

oee (A + 2ii)a(Tl-T0) 
"n 
aee 

Substituting these nondimensional variables to Eqs.(l), 
(2) and (3) and applying the Laplace transform denoted 
by asterisk (*) with parameter p under the initial 
condition 

T - 0,   U-U,T-0,   e-e,r> 

we have 

On 

oee 

U U 
(U,P+—)±(V-1)— 

(6) 

(7) 

-£(1+T,P)0 

u;pp+-U;p-(ß2p2
+-L)U 

P p2 

-C(i+r,)e,; 

e'PP+—6>p-Q-+roP)Pe 

where 7] = V / (1 - v). 

From Eqs. (8) and (9), they follow that 

ö*-(|2-/sVWo(liP) 
+ (i-ß2p2)A2I0(&P) 

(8) 

(9) 

(10) 

(11) 

where Al and A2 are integral constants and §, and 

|2 are the positive roots of the equation 

r - (B0p + Bi)p? + (1 + T0p)/3 V - °    (12) 

where 

B0 - B2 +T0 + 5(T, +5ikz0),Bl - 1+5      (13) 

Substituting Eqs.(10) and (11) into Eq.(7), the 
following equations can be obtained as 

Orr 

oee 
■S(1 + T,/>) MST/oöiP) (14) 

+ Aisl'oihP)} * (i -1) ?(i+Tirte' 
p 

The boundary condition is represented by 

r-b;   T~(TX -T0)H(t) + TQ,   orr -0      (15) 

where //(/) is Heaviside unit step function. 
Substituting Eq.(5) to the above equation and applying 
Laplace transform, we obtain 

p-1;   6   —, Or 
P 

(16) 

Substituting Eqs.(10),(ll) into Eq.(16) the unknown 

constants A^,A2 are obtained as 

' (ci-e2)P (17) 
^ .,-[(l-l)fi/|(Si)+PV/o(g,)] 

(c, -c2)p 
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where 

q - (§f - ß2p2 )/o (51 M2h (h ) + (»?- l)'l (52 )521 

C2 -(§f -/52
P

2
)/0(S2)[S?/O(SI) + (»J-I)/I(SI)SI] 

(18) 
Substituting Eq.(18) to Eqs.(lO), (11) and (14), the 
solutions in the Laplace transform domain can be 
obtained. 

3.     Numerical Inversion of Laplace Transform 

Let F(p) be the Laplace transform of a function f(t). 
The inversion formula for Laplace transform can be 
written as 

1   J*',x nl /(O-^rT. et"F(p)dp 
2mJd-i*> 

(19) 

where d is an arbitrary real number greater than all the 
real parts of the singularities of F(p). 

We shall now outline two numerical methods used 
to find the solution in the physical domain. 

The one is the Hosono's method [6]. The above 
integration is approximated the following infinite series 
form 

/(0- £J£ (-!)"/„ JF(- a + i(n-Q5)n' (20) 

where Im represents the imaginary part. As the infinite 

series in Eq.(20) can only be summed up to a finite 
number N of terms, Euler's transformation is used to 
accelerate the convergence of the above series. We 
use Euler's transformation for last Np terms of this 
finite series. 

The other method is proposed by Honig and 
Hirdes [7].       Taking p=d+iy, and expanding the 

function h(t)=  e~rf'/(0   in a Fourier series in the 

interval [0, 2T\ , the approximate formula for the 
integral in Eq.(19) is presented by 

/(<) - |c0 + ^^K^ein!tt,T F{d +iha/r)]+£rf 
n-i 

(21) 

where Ed is the discretization error.   As the infinite 

series in Eq.(21) can only be summed up to a finite 
number N of terms, the e -algorithm is used to reduce 
the truncation error and, hence, to accelerate 
convergence. 

4. Numerical   Results 

Numerical calculations are carried out for 

u = 0.3,jS = 0.01,<5 =0.02 

{L-S theory)   T0 = 5x 10"5 

{G-L theory) T0 =TJ =5xl0-:> 

We adopt the parameters for Hosono as a=8, Np=8. 
The calculation for Honig and Hirdes is carried out by 
use of the subroutine program LAPIN appeared in their 

paper. 
Figure 1 shows the relation between radial stress 

and the truncation term number for two numerical 

methods.   The radial stresses for the position p =0.01 

at the time when the first stress wave is reached are 
shown. From Fig. 1, we adopt the truncation term 
number N= 175. 

Figure 2 shows the radial stress distributions 
based on the coupled, L-S and G-L theories at various 
time before the first stress wave propagates to the 
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Fig.l The relation between radial stress and truncation 
term number N. 
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Fig.2   Radial stress distribution 

center by use of Hosono's method. Large stress 
occurs as the stress wave front approaches to center. 
The hoop stress distribution based on the G-L theory 
are shown in Fig.3. The tendency of the hoop stress 
distribution is similar to that of the radial stress 
distribution. 

The   time   variation   of  radial   stress   at   the 

position p =0.01 is shown in Fig. 4. The peak of 

stress appears periodically at interval T = 0.02. 
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Fig. 4 Time variation of radial stress 
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Fig. 3    Hoop stress distribution 
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One-dimensional soliton-like waves in a low-temperature nonlinear thermoelastic solid are re- 
viewed. The thermoelastic solid is modeled within an extended nonlinear thermomechanics in 
which free energy and heat flux are generalized - in comparison to classical theory - to include 
an "elastic" heat flow that satisfies an evolution equation. When the absolute temperature 
T, heat flux q, and stress 5 depend on the space variable x and time t only, a soliton-like 
thermoelastic wave (T, q, S) is generated from a potential $ = $(x,<) *>"* a displacement 
u = tt(x,t) (\x\ < co, t > 0) that satisfy a nonlinear coupled system of partial differential 
equations subject to suitable end conditions at x = q=oo for every t > 0. If u = 0 and a thermo- 
elastic coupling parameter vanishes, the nonlinear equations reduce to a single field equation 
for $ that describes a soliton-like wave in a nonlinear rigid heat conductor. The survey focuses 
on soliton-like solutions to the nonlinear system of field equations as weD as to the nonlinear 
single equation in a neighborhood of thermodynamical equilibrium when a low-temperature 
parameter is small. Explicit closed-form soliton-like waves that reveal "fountain" effect in a 
neighborhood of a wave front, as well as those represented by implicit solution to the nonlinear 
equations, are discussed. 

Key Words: Generalized Nonlinear Thermoelasticity, Low Temperatures, Soliton-Like Waves. 

1. Introduction 

An attempt to describe low-temperature non- 
linear thermoelastic waves has resulted in publica- 
tion of a number of theoretical and experimental 
papers in this field. The survey covers theoreti- 
cal results on low-temperature soliton-like thermal 
and thermoelastic waves. Most of the results were 
obtained by the present authors only recently. A 
nonlinear model of a homogeneous isotropic rigid 
heat conductor that has made significant impact 
on the development of these results was proposed 
in [1]. In that model both the free energy and the 
heat flux vector depend not only on the absolute 
temeprature but also on "elastic" heat flow that 
satisfies an evolution equation. When this equation 
is combined with the energy conservation law one 
obtains a nonlinear coupled system of partial differ- 
ential equations with a low-temperature parameter 
u from which the absolute temperature and elastic 
heat flow fields are to be found. The model pro- 
posed in [1] was a starting point for writing the 
papers [2] and [3] in which problems of existence 
of low-temperature soliton-like thermal waves were 
discussed. 

An attempt to generalize the nonlinear rigid 
heat conductor introduced in [1] to a nonlinear 
thermoelastic body in which soliton-like waves may 
propagate, has resulted in publication of papers [4], 
[5], and [6]. In the thermoelastic model both the 
free energy and the heat flux depend not only on 
the absolute temperature and the strain tensor but 
also on "elastic" heat flow that satisfies an evolu- 
tion equation, and enters a modified Fourier law 
and a modified free energy formula through a lin- 
ear term and a quadratic term, respectively. When 
the evolution equation is combined with the two 
laws of balance of forces and moments and with 
the geometric relations, a nonlinear coupled sys- 
tem of partial differential equations for the abso- 
lute temperature, displacement, and elastic heat 
flow, as unknown fields, is obtained. Apart from 
usual thermoelastic constants, a low-temperature 
parameter w, similar to that of [1], is present in 
the nonlinear partial differential equations. In [4], 
soliton-like thermoelastic waves are discussed when 
u = 1. In [5] and [6] the results of [4] are gener- 
alized to include the case u € (0,1], and obtain 
low-temperature soliton-like thermoelastic profiles 
for w —+0+. 
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It should be noted that a theory of nonlinear 
low-temperature waves propagating in a rigid heat 
conductor, based on a constitutive relation of Cat- 
taneo type and a parabolic form of internal energy 
on the heat-flux axis, was proposed in [7]. Also, and 
extension of the theory in [7] to include a nonlinear 
thermoelastic model was given in [8]. However, no 
soliton-like waves were discussed in [7] and [8]. 

In Section 2 the fundamental system of field 
equations for a low-temperature nonlinear ther- 
moelastic solid in terms of an elastic heat flow po- 
tential $ = $(*,<) and a displacement u = u(x,t) 
is recalled, and associated initial-value problems 
are formulated. As a particular case, the governing 
equations and formulation for a low-temperature 
nonlinear rigid heat conductor are recovered. Sec- 
tion 3 is devoted to exact and approximate soliton- 
like solutions for a nonlinear thermoelastic solid, 
while in Section 4 soliton-like solutions for a non- 
linear rigid heat conductor are reviewed. 

2. Basic Field Equations 

The model of a low-temperature nonlinear ho- 
mogeneous thermoelastic solid appropriate for a 
one-dimensional case obeys the following dimen- 
sionless field equations (see eqs. (44) in [5]): 

($« - $trr +W2$?r)exp(-W$4) - $*$st 

- w_1[^x* + «xt exp(-w$t)] = 0 (1) 

w_1(«** ~ C2««) + e*««« exp(-u;$t) = 0     (2) 

where $ = $(x,t) and u = «(*,<) denote an elas- 
tic heat flow potential and a displacement in the 
«-direction, respectively, and t denotes time, while 
w, e*, and C represent a low-temperature parame- 
ter, a generalized thermoelastic coupling constant, 
and an inertia parameter, respectively (see eqs. (23) 
in [5]). Subscripts are used for partial derivatives. 

The absolute temperature T = T(x,t), total 
heat flux q = q(x,t), and stress S = S(x,t) in the 
«-direction are given in terms of $ = $(*,<) and 
u = u(x, t) by 

T = «p(-u*0 (3) 

q = $r + uQfxt exp(— w$t) (4) 

S = us - c* [exp(-o;$t) - 1] (5) 

For the governing equations (l)-(2) the following 
Cauchy problem is formulated: Find a pair ($, u) 
that satisifes (1) and (2) with \x\ < oo, t > 0, 
subject to initial conditions 

*(*,<)) = *•(*)■    *t(*,0) = *i(*) 

u{x, 0) = u0(x),    ut(x, 0) = tii(ar)        (6) 

where $<,, $i, u0, and ui are prescribed functions 
suitably vanishing as \x\ — oo. By virtue of eqs. (3) 

and (4), a solution to the Cauchy problem gener- 
ates a thermoelastic process (T, q, S) corresponding 
to the initial data 

r(*,o) = «p[-w*i(*)] (7) 

q(x, 0) = $'0(*) + w*i(ar) exp[-w$i(*)]      (8) 

S(x, 0) = u'0(x) - €*{exp[-W$1(a;)] - 1}      (9) 

where prime (') denotes a derivative with respect 
to x. If 

(*i,«i, *;,«;)(*)-»(0,0,0,0) as 1*1-00 

then 

(T,9,S)(*,0)-(1,0,0)   as   M-00     (10) 

Therefore, for suitably vanishing data at infin- 
ity, the Cauchy problem described by eqs. (l)-(2), 
and (6) complies with the initial thermodynami- 
cal equilibrium at which T = 1, q = S = 0 as 
|*| — oo. Also, note that if $,, = $i = u0 — u\ = 0 
for |*| < oo and u = 0, the only solution to eqs. (1)- 
(2) subject to the conditions (6) is a trivial solution 
($,«) = (0,0) that corresponds to the thermody- 
namical equilibrium: (T, q, S) — (1,0,0). 

If u = u(x,t) = 0 and e* = 0, eqs. (l)-(5) re- 
duce to those describing a low-temperature nonlin- 
ear rigid heat conductor (see eqs. (34) and (36) in 
[3], where e is to be identified with u of the present 
paper) 

($tt-$txx+w$2
:t)exp(-w$t)-*x***-w~1*rx = 0 

(11) 
T = exp(-w$t) (12) 

q = $r + w$jrt exp(—w$t) (13) 

while the Cauchy problem given by eqs. (l)-(2), and 
(6) is formulated as follows: Find a function $ = 
$(*,<) that satisfies eq. (11) for |*| < oo, t > 0, 
subject to the initial conditions 

#(*, 0) = $<>(*),    «,(«, 0) = $i(*)    |*| < oo 
(14) 

where $<, and $i are prescribed functions. 
A solution to the Cauchy problem stated by 

eqs. (11) and (14) generates a thermal process 
(T, q) corresponding to the initial conditions 

r(*,0) = exp[-w$1(*)] (15) 

q(x,0) = $',(*) + «$;(*) exp[-w$i(*)]     (16) 

and 

if 

(r,g)(*,0)-(l,0)   as    |*|-co (17) 

(«i, *;, *i)(«) -(0,0,0)   as    |*|-co   (18) 

Clearly, if 4>c = $i = 0 and u = 0, the only solu- 
tion to eqs. (11) and (14) is a null solution $ = 0 
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corresponding to the thermodynamical equilibrium 
(r,«) = (i,o). 

Existence and uniqueness theorems for the 
Cauchy problems (l)-(2), and (6); and (11) and 
(14) have not been formulated yet. The existence 
of particular soliton-like solutions to eqs. (l)-(2), 
and to eq. (11) is discussed in Sections 3 and 4, 
respectively. 

3. Soliton-like thermoelastic waves 

A solution ($, u) to eqs. (l)-(2) is sought in the 
form 

where 

$ = $(s),    u = u(s) 

s = x — vt |s|<oo 

(19) 

(20) 

and v (v > 0) stands for a constant to be deter- 
mined. Substituting eqs. (19) into eqs. (l)-(2) and 
(3)-(5), and eliminating u from eq. (1) by using 
eq. (2), results in the following equations 

(/+*/' ~ /2)exp(-/) - M~l(l + /)/' 

+ e*»(l - CV)_1/exp(-2/) = 0      (21) 

|[«-e-(l-CV)-1exp(-/)] = 0 

and 

T = exp(-/),       ? = /exp(-/)-M-7 

5 = «-c*[exp(-/)-l] (22) 

where 
/ = f(s) = w$t = -wt>$ (23) 

and the superimposed dot stands for the derivative 
with respect to * ( = d/ds). 

A soliton-like thermoelastic wave is denned as 
a triple (T, q, S) generated by a pair (/, it) that 
satisfies the nonlinear equations (21) for \s\ < oo 
subject to the boundary conditions 

/(-oo) = /(+oo) = 0,    /(-oo) = /(+oo) = 0 

«(-oo) = w(+oo) = 0 (24) 

The conditions (24) and eqs. (22) imply that 

T(-oo) = T(+oo) = 1,    q(-oo) = q(+oo) = 0 

S(-oo) = S(+co) = 0 (25) 

Therefore, a soliton-like thermoelastic wave is rep- 
resented by the localized constant profile functions 
T = T(s), q = q(s), and S = S(s) on any plane 
s =const propagating with a velocity v in the x- 
direction. Far away from the propagating plane 
the wave attains a thermodynamical equilibrium 
denned by (T,q,S) = (1,0,0). 

3.1 SOLITON-LIKE THERMOELASTIC WAVE 
OF ORDER ZERO 

For a soliton-like wave of order zero 

T = exp(-w $,) « 1 - w #t (26) 

and eqs. (l)-(5), and (21)-(22) reduce to 

<bxx - w$M + w($rx + 2$2)* 

+ «x«(l-u#,) = 0 (27) 

«xx - <2
«H + e*«**t = 0 

T = l-w$j,    q = $x + u$xt,    S = ux + e*u$t 

(28) 
and 

4[*+—4rr/] = 0 dsL~ ' l-C2c2'J     " 

r=l-/,    q = f-{wv)-lf,    S = i + e*/(30) 

where 
e^vu1'2,       C=C«"1/2 (31) 

while the boundary conditions remain as in (24). 

3.2 SOLITON-LIKE THERMOELASTIC WAVE 
OF ORDER ONE 

In this case T is approximated by 

T = exp(-w *«) « 1 - « *« + i(w $«)2      (32) 

and eqs. (l)-(5) and (21>(22) reduce to 

$** - w$« + U($xx + ö*x)< + «xt(l - w$«) 

- ^2[(*?)«x - (*?)« - «xt*2] = 0        (33) 

«xx - C2«« + e*w$x, - -e*w2($t
2)* = 0 

T = 1 - w$« + -(«$t)2 

q = Qx+u$xt-±u)
2(*2)x (34) 

5 = ux + e*(w$t - £W2*2) 

and 

^M^W2*.^/2^-/2),2 

+-^K/ - ^/2) - kf - If2)2»=° (35) 1_{VIW     2J 

d ,du e*      ,,     1 ,,., 
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while the boundary conditions remain as given in 
eq. (24). 

The soliton-Iike waves of order zero and one de- 
scribe low-temperature thermoelastic disturbances 
for small u. Soliton-like wave of order one is less 
restrictive than that of order zero. 

It is shown that there are: (i) two implicit 
integral-form solutions to eqs. (21) and (24); (it) 
two closed-form solutions to eqs. (29) and (24); 
and (Hi) two implicit algebraic-form solutions to 
eqs. (35) and (24). It is also shown to what extend 
these solutions may be identified with the soliton- 
like thermoelastic waves. The solutions obtained in 
(it) and (Hi) are illustrated by a number of graphs. 

4. Soliton-like thermal waves - 

These waves are obtained by a restriction in 
Section 3 to u = 0 and e* = 0. Therefore, a 
soliton-like thermal wave is described by a poten- 
tial $ = $(z,t); |a;| < co, t > 0, that satisfies 
eq. (11) subject to suitable end conditions; and the 
associated temperature T = T(x, t) and heat flux 
q = q(x,t) are given by eqs. (12) and (13), respec- 
tively. 

Let 
1 -.t       \s\<oo (36) 

T = l-f, « = ■ 

S = X- 
y/u 

and look for a solution $ = $(s) to eq. (11). Then 
the following is obtained: 

(/+4=/-/2)exp(-/)-4=/(l + /) = 0 (37) y/HJ 

and 

r = exp(-/), 

where 

y/iJ 

g = -_/ + /exp(-/)   (38) 

/ = f(s) = W$t = —y/Ü$ (39) 

A soliton-like thermal wave is denned as a pair 
(T, q) generated by a function / = f(s) that satis- 
fies the nonlinear equation (37) for |s| < oo subject 
to the boundary conditions 

/(-co) = /(+oo) = /(-co) = /(+oo) = 0   (40) 

3.1 SOLITON-LIKE THERMAL WAVE 
OF ORDER ZERO 

For a soliton-like thermal wave of order zero 

T = exp(-w $t) « 1 - u $t (41) 

and, with c0 = ^U, eqs. (11), (37)-(38) reduce to 

*x* - ±*u + 4p(*xx + \*l)t = 0 (42) 

1 
lO-i^")-0 

y/ZJ f + f (44) 

while the boundary conditions remain as given in 
eq. (40). 

4.2 SOLITON-LIKE THERMAL WAVE 
OF ORDER ONE 

In this case T is approximated by 

T = exp(-u> $«) » 1 - u $t + -(u $«)2     (45) 

and eqs. (11), and (37)-(38) reduce to 

$** - — $« + -s($xx + z$l)t 

and 

-4[($?)xx-(#?)*] = 0 

(1-/)/-^/2=0 

(46) 

(47) 

(43) 

r=l-/+i/2,    9 = _-^ + /(l-/)    (48) 

while the boundary conditions are given by eq. (40). 
It is shown that there is: (i) and implicit 

integral-form solution to eqs. (37) and (40); (ii) a 
closed form solution to eqs. (43) and (40); and (in) 
an implicit algebraic-form solution to eqs. (47) and 
(40). Also, it is shown to what extend these solu- 
tions describe the soliton-like thermal waves. 
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Generalized Thermoelasticity in a Plate Subjected to Partial Heating 
under Some Constraint Conditions 

T. Furukawa*, M. Konishi**, X.F. Ding* and H. Nakanishi* 
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This paper deals with the two dimensional generalized thermoelasticity based on the Lord and 
Shulman's theory and the Green and Lindsay's theory. The fundamental equations of generalized 
thermoelasticity which include bom generalized theories are used. The generalized thermoelastic 
problems for a homogeneous and isotropic plate whose surfaces are traction free and subjected to a 
partial heating are analyzed by means of the Laplace transform and Fourier transform. The 
inversions of the Laplace transform and Fourier transform are carried out numerically. The numerical 
calculations for temperature and stresses under the generalized formulation are carried out. 

Key Words:    Generalized Thermoelasticity, Wave Propagation, Relaxation Time, Plate, Partial 
Heating 

1. Introduction 

The classical theory of dynamic thermo- 
elasticity which takes into account the coupling 
between temperature and strain fields has been 
discussed in many papers. However, the dynamic 
coupled theory involves contradiction that thermal 
wave propagates at an infinite velocity. The theory 
of generalized thermoelasticity has been developed 
in an attempt to eliminate the paradox of the infinite 
velocity of thermal propagation. Therefore, the 
generalized theory is the dynamic coupled thermo- 
elasticity which includes the time needed for 
acceleration of thermal wave. 

At present there are two different theories of 
the generalized thermoelasticity: the first is proposed 
by Lord and Shulman [1] (L-S theory), the second is 
proposed by Green and Lindsay [2] (G-L theory). 
Furukawa et al. [3] used the fundamental equations 
of generalized thermoelasticity introduced by Noda 
et al. [4] which include the L-S theory and G-L 
theory and analyzed the one dimensional problem for 
a plate. 

This paper deals with the two dimensional 

generalized thermoelasticity for a homogeneous and 
isotropic plate based on the L-S theory and G-L 
theory. It is assumed that the plate is initially 
natural state. The surfaces of the plate are traction 
free and subjected to a partial heating. The 
temperature, displacement and stresses which satisfy 
the boundary conditions obtained by means of the 
Laplace transform and Fourier transform. The 
inversions of the Laplace transform and Fourier 
transform are carried out numerically. 

2. Analysis 

We consider the two dimensional generalized 
thermoelasticity for a homogeneous and isotropic 
plate of thickness /. The fundamental equations 
which include the L-S and G-L theories consist of 
the heat conduction equation 

KV
2
T -{T + t0T,t ),t = —(e + o\kt0e,t )„    (1) 

mxa 

and the equation of motion 

<?xys + °yy,y = P>m 

and the stress-strain-temperature relations 

(2) 
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'yy 
7TZ) 

= 2//. 
'yy 

$2Z j 

+ Ae 

'xy 

-(3A + 2/i)a(7,-r0 + ?12',f)    (3) 
= 2jue. *y 

where 

V2=- 
ck2 

s_0A + 2Mya% 

(A + 2ju)pcv 

d2 3A + 2u    1-v 
+ —r, m, = — =  

cy2 A+ 2/*     l + v 
2 „2' 

e = exK+exy+£s (4) 

Here T: temperature,   cry :stress component,   Sy: 

strain component, u, v: displacement components in 
the x and y directions respectively, t: time, K: 

thermal diffusivity, a: coefficient of linear thermal 
expansion, 8: coupling parameter, p: density, cv: 

specific heat at constant volume, A,fi: Lame's 

constants, v: Poisson's ratio, TQ: initial temperature, 

f0,fi: relaxation times, 5lk: Kronecker's delta 

whose subscript k denotes the number of relaxation 
times. The comma denotes the differentiation 
with following variable. 

The strain components are 
£„ =U, £      = V Cyy *,y 

eB=c1(y,t) + c2(y,t)x 
1 , 

(5) 

where cr(y,t) and c2(y,t) are unknown function 

determined from z direction. We consider the 
conditions for z direction as follows: 

(Case 1) The displacement are restrained. 
(Case 2) The displacement are not restrained. 

We introduce the following nondimensional 
quantities: 

(X,Y) = ^(x,y) ,  (r,r0,r1) = ^-(?,?o^i) 

g=lzZL (f7>F)=   v«(«,v)      x=vt/ 

71-ro Kaül-To)' K 

e = -     in  r \ -   (ci'c2) 
To)' (Cl'C2)-^WoT 

(6) 

yy' °2T > ®xy ) 

a(7i 

pa{Ti-Ti) 

where ve is the velocity of longitudinal wave given 

by ve = iJ(A + 2p) I p   and Tx  is the reference 

temperature. 
Substituting these quantities and applying the 

Laplace transform defined by the relation 

/*(*) = J/(r)exp(-yr)rfr (7) 

to Eqs.(l), (2) and (3), we have 

S_ 
V2 e* - (1 + TOS)S0* = — (1 + Slk r0s)se*    (8) 

'i 

axx,x + crxr,r -r>hs U 
(9) 

<*XY,X +CTyyj=m2S  V 

axx = m2U*x +(™2 ~ W*r ~m\mi 0 + z\s)8* 
-(m2-2)(C*l+C;X) 

Oyy = /w2F,y+(TK2 - 2)U*X -m1m2 (1 + r^d* 

-{m2-2)(Cl+C*2X) 

<r*zz - (m2 ~ 2)(#,*r +V.*y ) - m1m2 (1 + z^O* 
-m2(C;+C*2X) 

*xr =&*■&,x GO) 
where the homogeneous initial conditions and the 
Eqs.(4) and (5) are used and 

V2=^2---<?2      ~ _A + 2//_2(l-v) - + - m-, =■ -,   m2 

,, (11) 

3X.1    m1 '     *        M l-2v 

Substituting Eq.(10) into Eq.(9), we obtain 

»hV'xx +U,Yy+(m2 - VjV^xy-m^U' 

= m^m^(1 + Z\S)d*x +(m2 -2)C2 

m2V*yy +V,*xx +(m2 - 1)C7,^ -m2s
2V* 

= m1m2(l + t1s)d*y (12) 

+ {m2-2){ClY+C%
2jX) 

We Introduce the displacement potential 0 
and {/definedby 

TT* J* * -rr* i* * (13) 

Substituting  Eq.(13)   and   applying   the   Fourier 
transform defined by 

1    °° 
f{q) = -= jf(y) exp(-iqy)dy       (14) 

—00 

to Eqs.(ll) and (12), the following relations are 
obtained. 

A A A 

£ xxxx-d2 +s0t* xx+ti4 +v2si+s2)</>* 
A A 

= B1(Ct
l + C*2X) (15) 

(16) V*xx-(q2 +m2s
2)v* =0 

where 

s1=s{L + 6 + s[l + r0 + S(Slk r0 + r,)]} 

^2 = (1 + T0S)S 
(17) 

Bl=ql+sl-si-2{\-—)(q2 +4)      (18) 1  v„2 , 52 ■ 
m-, 
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The solutions of Eqs.(15) and (16) are 
A 

<j>* = m1 (1 + tis)[An exp(-i1A
r) + An expfaX) 

+ A2l ex.p(-k2X) + A22 exp(k2X)] 

q4 + q2sx + s2 

■(C*1+C*2X) (19) 

y/* = m1 (1 + T15)[^3i exp(-£3X) + A32 exp(k3X)] 

(20) 
where Ay (7=1,2,3; 7=1,2) are unknown constants 

determined from the boundary conditions and kx and 

k2 are the positive roots of the equation 

k4 -(2q2 + sx)k
2 +q4 + q2sl+s2=0    (21) 

and expressed as 

{k2} = ^[2q2+Si±^~4S2] (22) 

and k3 is expressed as 

k3=Jq2+m2s
2 (23) 

Similarly temperature is obtained as 
A 

6* = (k2 - q2 - s2)[An exp(-^X) + Al2 exp^X)] 
+ (if -q2 -s2)[A21 exp(-k2X) + A22 exp(k2X)] 

A A 

B2 

q4 +q sx+s2 

where 
-5s 

(C1+C2X) 

1 

(24) 

(l + SlkT0s)[2(l-—)q2+s2]    (25) 
"      mx m-! 

Stress components are represented by displacement 
potentials as 

A A A 

Gxx =(m2s
z + 2q2 ) 0* + 2iq y/*x 

A 

OYY = m2s
2 <j>*-2 ^xx -2iq y/*x 

A A A 

azz = (m2 - 2)s2 </>* - 2ml (1 + rxs) 0*      (26) 
A A 

-4(1—L)(C; + C*2X) 
m2 

A A A 

CTxy = 2iq fa - (rr^s2 + 2q2 ) y/* 
A A 

The unknowns C\ and C*2 can be determined from 

the conditions for z direction. 
Next we determine the remainder unknowns. 

As the surfaces of the plate are stress free, the next 
conditions are obtained 

A A 

X = L; axx = GXY = ° 

(27) 

We consider that the local heat source r(y,t) is 
applied to the surface x=Z. The thermal boundary 
condition represented by nondimensional form is 

A A 

X = 0;  0j+He(l + Tos)e'=O 
A A A U<V 

X = L; $j +Hb(l + T0S)0* = (l + r0 s)R* 

where Ha aadHb are Biot's numbers and R is the 

nondimensional form of the heat source r. 
The remainder unknowns can be determined from 
Eqs.(27) and (28). The solutions for temperature, 
displacement and stresses are obtained in the 
Laplace and Fourier transformed domain. 

3. Numerical Inversions of Laplace Transform 
and Fourier transform 

We use the numerical method proposed by 
Hosono [3].   The inversion formula is presented by 

/(r)s«2Wy(-i)-fa{F(*+i»^*)> 
T   £1 T       T 

(29) 
We adopt the parameters as k=6 and Nh = 60 by 

preliminary calculations. 
We use the Fillon's method for the numerical 

inversion of Fourier transform represented by 
Nf 

f(y)S-L=YpJ  f(q)exi?(iqy)dq      (30) 

A 

where f(q) is approximated to quadratic functions. 

We adopt the parameters as the upper limit q=35 and 
Nf =115 by preliminary calculations. 

4. Numerical Results 

Numerical calculations are carried out for 
v = 0.3, Ha=Hb = l,L = l, £ = 0.0 l,r0 =0.02 

and the heat source 
R(Y, T) = exp(-10|^)#(r)exp(-r) 

where H{) is Heaviside unit step function. 

Figure 1 shows the temperature distributions for 
Case 1. The domain of influence of the heat source 
is spread over as increasing the time. 

Figures 2 and 3 show the stress distributions 
a xx and aYY for Case 1, respectively. 
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The large variations occur at the time when the 
stress wave is arrived. 

(a)    T = 0.2 

(b)    r=0..4 

(c)    r = 0..6 

Fig. 1   Temperature distributions for Case 1. 

(b)    r = 0..6 

Fig. 2   Stress distributions a^ for Case 1 

(a)    r = 0.2 

Fig. 3    Stress distributions  oyr for Case 1. 
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Waves propagating along the edges of athin flate plate of infinite length, wMch is in a stale of plane stress 
are discussed for insulated edge ronditioiis, lame's rxKentialsarei^ 
equations. The characteristic equations däerminmg the phase speeds cfsynmietric and a^ 
arederivedlhe cut-off fiequencies are obtained forboth cases. RequeiKyequationforaparticularcase of waves 
masenü-mMteplateisden\^andiiuTnericalresdtshave beenobtainedto seeflKaddMonaleffeaofiniaopolar 
on phase velocity. The results obtained are compared with earlier investigations. 

Key Words:   Thermal Stress, Micropolar, Thermoelasticity, Relaxation time. 

1. Introduction 

In recent years, many theories have been proposed 
to study the microstructural behaviour of the elastic 
solids. This theory is expected to find applications in 
the treatment of the mechanics of granular materials 
with elongated rigid grains and composite fibrous 
materials. Recent experiments by Gauthier and 
Jakesman [1] reveal that the micropolar waves can be 
excited and detected in typical solids, Yang and lakes 
[2] suggest, with a reasonable degree of confidence that 
human bone can adequately be used as a model for 
theory of micropolar elasticity. 

Several attempts have been made to formulate 
generalized theory of thermoelasticity. Because of the 
experimental evidence available in favour of second 
sound effects, generalized thermoelasticity is of 
practical interest too. Chandrasekhariah [3] formulated 
generalized theory of micropolar thermoelasticity based 
upon Eringen's theory of micropolar elasticity [4] by 
including heat-flux among constitutive variables. 
Chandrasekhariah and Srikantiah [5] studied edge waves 
in a thermo-elastic plate in the context of temprature- 
rate-dependent thermoelasticity theory. In the present 
investigation, we have discussed edge waves in a heat- 
flux dependent micropolar thermo-elastic insulated 
plate in the context of theory proposed by 
Chandrasekhariah [3]. 

2. Basic Equations 

We investigated plane waves which propagate 
along the edges of a plate, occupying the space 

T3i = m3i = 0,3 = Oonx3 = ±L 

■ oo < Xj < oo, -H < x2 < H, -L < x3 < L. 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

We have assumed that both the faces x3 = ± L and 
x, = ± H are stress free, couple stress free and are 
insulated. Then we have 

t2 = m2i = e,2 = 0onx2 = ±H 

where 

In these equations r. are the components of force stress 
tensor, m... the compnents of couple stress, 0 the 
temperature deviation above the uniform temprature 
0 > 0, u are the components of displacement, ^ 
microrotation vector, X and ji Lame's constants, a', ß', 
y', k' micropolar constants, at the coefficient of linear 
thermal expansion, ea|Jr the alternating tensor, 
(),. = 9()/9x.. 

It is assumed that plate is very thin, then (2.1) takes the 
form 

T3i = m3i = e,3 = 0 (2-5) 

throughout the plate. Consequently, the plate remains 
in the state of plane stress and following the usual 
procedure, the equations of motion for an isotropic, 
homogeneous, micropolar thermoelastic material 
proposed by Chandrasekhariah [3] reduce to the 
following " 

<|i + X') UMS + X3 u^ - ß*0,o + k' e^ |y, = pua (2.6) 

Y'^ + k'(u2>1-uu)-2k'^ = pj|3 (2.7) 

e>ao = 6, (1 + T0 9/9t) (c"0 + ß- u„> / k (2.8) 

** = *■' S, V & + V V^pa * ß"e8af>' 

^«'^S^ + ß'^ + Y'^ 
where 

t= (o, o, y, x'=xxjxv ß"=ßT yx,, 
c" = c(l+e), e = ßVc\, X2 = (2n + k0, X3 = \i + k', 

() = 9()/9t,a,ß,Y=l,2. 
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In these equations J is rotational inertia, t0 relaxation 
time, p density, k thermal conductivity, c the specific 
heat at the constant strain. 

Using u, = ((),, + V,2, u,« fcj - VM •where <t>' V and 

% are functions of x:, Xj and t, equations (2.6) - (2.8) 
reduce to 

(2.9) 

(2.10) 
[V2-(l/p2)02/3t2)]<t> = ß"8/pp2 

[V2-(l/b2)32/3r]v = -k,y^3 
[{V2 - (1/p2) 32/3t2} {V2 - (1 + \ 3/3t) (60/k>) 3/3t} 

- (i+10 a/at) (e/k\) v2 a/at] <t>=o      (2.1 D 

[{v2 - (i/b2) a2/at2} {v2 - (2^/70 - (pj/rO a2/at2} 

+ (k/2/Y'X3)V
2]\i/ = 0 (2-12) 

where, 

p2 = a" + X,)/p,k; = k/pc", 

£;=ß-2 e/pW, v2=a2/aX]ax2, b2=(n+k-yp. 

3. Solution of the problem 

We take 

{<!>, V) = {<l>0(x2), V0(x2)} exp [KYoXj-cot)] (3.1) 

Here Y0 = Y: + iY»is complex number, co is the angular 
frequency. Only real parts of (3.1) are physically 
relavant. Using (3.1) into (2.11) and (2.12) we get 

4>0 = A1cl- + A2ci- + BlSl- + B28I- (3.2) 

Vo = A3s]
1 + A4s2' + B3cI

1 + B4c2
1 (3.3) 

where A,, A,, A3, A4, B, , B4 are arbitrary constants, 

ca™ = cosh m^ x2, sa
n = sinh mta x* sB

! = sinh lta x,, 

c^coshl^x,. 

Here m0I, m02 are the complex roots of the equation 

(Yo
2 - m0

2)2 - [co2/p2 + (i©eo/k> iWj'V 

-icoT0(l+peVeo)}](Y0
2-m0

2) 

+ (ieoco3/pk",p2)(l-iön0) = 0 (3.4) 

and 10] and 10, are the complex roots of the equation 

(Y0
2 -10

2)2 - [(ca%2) + (pJco2/YO - (2k7Y') 

+ (k'2/TX)] (Y0
2-10

2) + (co2/b2) [(pJco^kO/YT = 0(3.5) 

With the aid of (3.1) - (3.3), we get the following 
relations 

u, = (A, f, + B1 gl) exp { i(Y0xrcot)} 

u, = (A, f, + B, g2) exp { KYoX^cot)} 

9 = (A, f. + B, g3) exp {i(Y0x,-cot)} 

q. = (A, f4 + B, g4) exp {i(Y0xrcot)} (3.6) 

where f and g; are functions of x,, 

f, = iYo (c," - A/c2
m) + (A/A,) l01c,' + (A/A,) l^1 

f2 = m0I s," - A0'mO2s2» - iY0 KV*.) s/ + (A/A,) s2'] 

f3 = (pp2/ß')(n]c;-A0'n2c2
ffi) 

f4 = - (tykO [(A/A,) n3s]
1 + (A/A,) n^1), 

\ = moa2 - %2 + °>V. «3 = J«2 + rftä - V' 
n4 = l02

2 + ((02/b2)-Yo2,A'0 = -(A2/A]), 

g,, g2> g3> g4 are obtained from f,, f2, f., f4, by replacing 
A'0, A,, A,, A4 by B'0, B,, B3, B4; cosh by sinh and sinh 
by cosh respectively. 
Since u0, 9 and ^ are to be purely real, taking real 
parts in the right hand side of (3.6) and eliminating the 
trignometric functions, we arrive at the following 
expressions 
(G'2u1-F2u2)

2 + (G'1u1-K,u2)
2 

= (FIG'2-F2G'1)
2exp(-2Y2x1), 

(G'^-H'^-KG'^-H»2 

= (H,
)G'2-H'2G

/
1)

2exp(-2Y2x]), 

(FÄ-H'Af + ^^-H',«,)2 

= (H',F2 - H'2F,)2 exp (-2Y2X,), (3.7) 

where F(x2) = A, f, + B, g,, G'(x2) = A, f2 + B, g,, 

H'(x2) = A,f4 + B]g4. 

4. Frequency Equation 

The boundary and thermal conditions (2.2) 
reduced to t2I = TM = 6,2 = m2 = 0 on x2 = ± H. 

Using these edge conditions, eliminating 
constants Al,...., A4 and Bl, B4 and introducing 
dimensionless variables, we get the following frequency 
equations 

(i) FOR SYMMETRIC MOTION 
rtc^M, s',s'2 L',L'2 c'0] c'02 O

2 (N,2-N2
2) (N4

2-N3
2) 

+ a2 [^F-^-Dn^'p^sy/i-N,2) 

-M,S',C'2(I-N,
2
)]T, = O (4.1) 

(i) FOR ANTISYMMETRIC MOTION 
IVM.M, C,C2 L',L'2 s'0, s'02 Q

2 (N,2-N2
2) (N4

2-N3
2) 

+ Q2 [k^-OvUQYtM/^U-N,2) 

-M]C'lS'2(l-N2
2)]T2 = 0 (4.2) 

We find from equations (3.4) and (3.5) that N, 
and N2 satisfy the equation 

N4-N2[l-(l+e'0)/ß„]-(l/ß0) 
= 0 (4.3) 

and, N3 and N4 satisfy the equation 

N*-N2[1 + J" + H*) + J"=0, (4.4) 
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where, T = -&, Q = ©H/b, V = Qb/T, L'a = ltaH, 

Ma = mJH, Na
2 = 1 - (pV®2>> N\.< = l- <b*nM' w2) 

n0 = ifibk'jp/e/CH-iÜbt), e'0 = e>/60, 

r = (pJb2Q2 - 2k-H2) / QY, H" = k,2H2 / tfy' (p. + kO, 

T, = d-N4
2) V2 s'01 C02 - (1-N/) L', s'02 C„ 

T2 = (1-N4
2) L'2 s'^ C01 - (1-N/) L': s'01 C02, 

s'a = sinhmteH, c'a = cosh mta H, s'ta = sinh lta H, 

k1 = 2 + (k7n),c0o' = coshl0(IH 

L'^=r2[i-(v2N\4/b
2)] = r2-fl2N2

3, 

We notice that the equations (4.1) and (4.2) may 
be regarded as equations connecting V and T. 
Accordingly, each of these equations, being 
transcedental, yields infinitely many discrete roots for 
V in terms of r, each root corresponding to a mode of 
vibration. Both symmetric and antisymmetric motions 
are obviously dispersive and the analysis of their 
behaviour in the general case is quite complicated. 
However, it is possible to obtain readily the cut-off 
frequencies by setting r = 0 in the frequency equations. 
The cut-off frequencies are governed by the following 
equations: 

(i) FOR SYMMETRIC MOTIONS 

N, (1-N,2) tan^bN/p) = NjO-N,2) tan(QbN/p) (4.5) 

N4 (1-N;) tan(ON.) = N3(l-N3
2) tan(QN4) (4.6) 

(ii) FOR ANTISYMMETRIC MOTIONS 

N2 (1-N2
2) tan(ßbN,/p) = N^l-N,2) tan(QbN2/p) (4.7) 

N4 (1-N4
2) tan(QN4) = N3(l-N3

2) tan(QN3) (4.8) 

5. Limiting Case 

For particular case, we have considered waves in 
a semi-infinite plate for large values of H. We suppose 
that 

I r I > (bQ / p) 1N, ,1, 

in>QIN34i,       Q->°° (5.i) 

Using these assumptions, equations (4.1) and (4.2) 
reduced to 

- r2 k,2 M, M2 V L2' (M]+M2) (L/+L.0 

+[k1r
2-(k1-i)n

2]2 [(flV/p2) - ra+(M1
2+M2

2+M1Ml)] 

[n2-r2 + (L1'
2+L2'

2+L1X2') = 0 (5.2) 

For fi -> <», the roots of equation (4.3) are given 
by 

N^l-teWN^-U/Q,,) (5-3) 

provided the terms containing 1/Q0
2, 1/Q0

3 and l/ß0 

are neglected. 
The roots of the equation (4.4) are given by 

N3
2 = l + H\N4

2 = r (5-4) 

Using (5.3) and (5.4) in (5.2), we get 

+ [k^-D (V2/b2)]2 [1- (VK) {1+(T0V>2)} 

+ T; {l-tvW^nW^O (5-5) 

In the above equations, we have used, fl0 = - (Ve / p), 

e0' = (e'^o), % = - <e<W < = <M/D, 
J;=(L2-/T),H;=(L;/T),W;= [ l-^/b^ar+iv^ 
The equation (5.5) is the phase velocity equation for 
insulated edge conditions in a semi infinite plate. 

6. Numerical results and discussion 

Numerical results for a particular model having 
following values of parameters have been obatined in 
case of semi infinite plate: 

X = 5.17 x 10", u = 2.44 x 10", p = 2.638, 

ct = .2096, a = .0421105 x 10-*, 60 = 20, 

k=.337284 

4t is clear from Table 1 that longitudinal speed 
(p) and shear speed (b) increases as micropolar effect 
increases. As in classical theory, we see that speed of 
shear waves is always less than the speed of longitudinal 
waves for all values of k'. From Table 2 to Table 4, we 
observe that for fixed value of t0, phase velocity 
increases as k' increases and for fixed value of k', phase 
velocity decreases as t0 increases. It is seen that the 
speed of edge waves changes its trend, when we take 
into account microstructure of the material as well as 
relaxation time. 

We get only one equation of the path in case of 
generalized thermoelasticity [5], but here we have 
obtained three equations (3.7). From these three 
equations of path, we get the similar type of result that 
size and shape of the orbits vary from one point to 
another and they decay with the advancement of the 
waves. 

It is evident that the cut-off frequencies 
determined by equations are effected by the thermal 
field as well as micropolar field. These equations are 
qmilar as obtained in [5], but values of parameters 
involved are different. As in [5], from (5.5), here also 
waves are not dispersive but are influenced by the 
finiteness of the heat propagation speed. If we set 
i'0 = J' = H* = k' = 0, then (5.8) reduce to the phase 
velocity equation of waves of classical elasticity. 
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Table 1. 
k' P b 

0 
.002x10" 
.005x10" 
.008x10" 

5.292938x10s 

5.293843x10' 
5.295202x10' 
5.296559x10' 

3.041287x10' 
3.042533x10' 
3.044402x10' 
3.046269X105 

Table 2. 

^0 
k' V 

.19839x10"" 

.19839x10"" 

.19839x10-" 

.002x10" 

.005x10" 

.008x10" 

2.799561x10' 
2.801997x10' 
2.80443 lxlO5 

Table 3. 

^0 
k' V 

.49508x10-" 

.49508x10-" 

.49508x10-" 

.002x10" 

.005x10" 

.008x10" 

2.79955675x10' 
2.80199317x10' 
2.80442532x10' 

Table 4. 

\ k' V 

.73916x10"" 

.73916x10"" 

.73916x10'" 

.002x10" 

.005x10" 

.008x10" 

2.79955303x10s 

2.80198945x10' 
2.80442209x10' 
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A Nonstationary Rayleigh Wave on the Surface of a 
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The effect of heat conduction on the propagation 
of a surface wave polarized in the sagittal plane along 
the surface of a torus is investigated. The modified 
Maxwell law is used instead of the Fourier law of 
heat conduction in order to take into consideration 
that small time what is necessary for the establish- 
ment of stationary heat conduction after the sudden 
occurrence of temperature gradient in a solid. The 
nonstationary surface wave is interpreted as the line 
on which temperature and components of the stress 
and strain tensors experience a discontinuity. The 
discontinuity line propagates with a constant nor- 
mal velocity across the free from stresses and heat- 
insulated surface of the torus and is obtained by the 
exit onto the torus surface of the three strong discon- 
tinuity complex wave surfaces intersecting along this 
line: quasi-thermal, quasi-longitudinal and quasi- 
transverse volume waves. Applying the theory of dis- 
continuities and using the kinematic, geometric and 
dynamic conditions of compatibility, the velocity and 
the intensity of the surface wave have been found. It 
has been shown that attenuation of the surface wave 
intensity is determined by the two factors: a consid- 
eration of the related strain and temperature fields 
and the change in curvature of the surface wave with 
time. 
Key Words:   Nonstationary Rayleigh  Wave,   Ther- 
moelastic Heat-Insulated Torus 

1. Introduction 

Nayfeh and Nemmat-Nasser [1] pioneered in consid- 
ering the problem on the propagation of a harmonic 
Rayleigh wave along the boundary of an isotropic 
thermoelastic half-space with allowance made for 
thermal relaxation. The half-space boundary was 
perceived to be free from stresses and thermal insu- 
lated. The equations for determining the Rayleigh 
wave velocity and its coefficients of attenuation both 
with depth and in the direction of propagation were 
obtained. The emphasis was on the thermal relax- 
ation time dependence of the surface wave velocity. 
One of the methods of perturbation technique - the 

asymptotic expansion matching principle - was used 
as the method of solution. 

The propagation of nonstationary surface waves 
of the "diverging circles" type along the free from 
stresses surface of a right circular cone from a 
hexagonal monocrystal whose axis coincides with a 
crystal's axis of isotropy has been investigated by 
Rossikhin [2] without regard for thermal effects. The 
Sobolev method [3] was used as the method of solu- 
tion. This method lies in the fact that the surface 
wave as a line of strong discontinuity is obtained as 
a result of the intersection of the conic surface ei- 
ther with one real conic volume shear wave of strong 
discontinuity (the surface wave of the "whispering 
gallery" type) or simultaneously with two complex 
conic volume waves of strong discontinuity: quasi- 
longitudinal and quasi-transverse waves (the nonsta- 
tionary Rayleigh surface wave). This approach al- 
lows one to use the well-developed technique of the 
theory of discontinuous functions [4] whereby both 
the velocities of the surface waves and their intensi- 
ties are calculated. It has been shown that the sur- 
face waves attenuate in the direction of their prop- 
agation, i.e. along cone generators, in accordance 
with a power law, and this attenuation is accounted 
for by the change in curvature of the surface waves 
with time. 

In the present paper, this approach is used for 
the investigation of the nonstationary Rayleigh wave 
propagating along the free from stresses and heat- 
insulated surface of a thermoelastic isotropic torus. 

2. Problem formulation 

Assume that surface waves polarized in the sagit- 
tal plane propagate in the form of lines of strong 
discontinuity (the lines on which the components of 
the stress and strain tensors change abruptly) across 
the free from stresses and heat-insulated surface of 
a torus; in so doing a diverging (converging) circum- 
ference propagates across the surface of torus along 
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the arc of the circle generating the torus surface by 
its revolution around the torus axis (Fig.l). 

nonstationary 
Rayleigh wave 

Fig 1. A scheme of a torus 

each of its points (see Fig.l), and gi is the projec- 
tion of the heat flow vector on the normal to the 
boundary surfaces of the three bodies. 

3. The Method of Solution 

In the subsequent discussion, we shall interpret the 
nonstationary volume wave of strong discontinuity E 
as a limiting layer of the thickness k at h —► 0, which 
surrounds the geometric surface E and within which 
the values try, <ry", Vi, v', qi,ql, and 6 change mono- 
tonically and continuously from the magnitudes try, 

(Tij+, vf, vi+, qf, qi+, and Q+ to the magnitudes 
o-y, (Tij-, «:~, v*~, g,~, q'~ and 0~ on the front and 
back boundaries of the wave layer, respectively. 

The dynamic behavior of a linear thermoelastic 
material, from which the body under consideration 
is made, in the curvilinear systems of coordinates is 
described by the following set of equations: 

?J = —AQÖ ,• — Toil 

^ = pi* 

(1) 

(2) 

(3) 

ay = fifaj + vjti) + Xv], gi5 - yßgij (4) 

where <ry and cy are the contravariant and covariant 
components of the stress tensor, respectively, vl and 
Vi are the contravariant and covariant components of 
the displacement velocity vector, respectively, q* and 
qi are the contravariant and covariant components of 
the heat flow vector, respectively, </y are the covari- 
ant components of the metric tensor of the space, 
9 = T — To is the relative temperature of the body, 
To is the body's temperature at the natural state, p is 
the density, A and p. are Lame's elastic constants, 6y 
is the Kronecker's symbol, c£ is the specific heat at 
constant strain, 7 = (3A + 2p.)oct, at is the thermal 
linear expansion coefficient, Ao is the thermal con- 
ductivity, T0 is the thermal relaxation time, a Latin 
index after a comma denotes a covariant derivative 
with respect to the corresponding curvilinear spatial 
coordinate x1 = p, x2 = 6 or x3 = <p, on overdot 
labels a partial derivative with respect to the time t, 
and Latin indices take on the values 1, 2, and 3. 

The boundary conditions 

O-ll = 0, <Ti2 = 0 

9i = 0 

(5) 

(6) 

should be added to the set of Eqs.(l)-(4), where an 
and cri2, (ci3 = 0 due to the symmetry of the prob- 
lems under consideration) are the components of the 
stress tensor on the boundary surfaces of the relevant 
bodies, since for all the three bodies the coordinate 
x3 = p is perpendicular to the boundary surface at 

Within the wave layer the following relationships 
are fulfilled for a certain function Z(x*,t): 

■        „&Z     DZ 
(7) 

where dZ/dn = Z^v* is the derivative with respect 
to the normal to E, i/j are the covariant components 
of the unit normal vector, gaß are the contravariant 
components of the metric tensor of the wave surface, 
x1p = dxi /dv,P, u1 and u2 are the curvilinear coordi- 
nates on the wave surface, Greek indices take on the 
values 1 and 2, a Greek index after a comma denotes 
a covariant derivative with respect to the correspond- 
ing surface coordinate, G is the normal velocity of the 
propagation of the surface E, D/Dt is the invariant 
derivative with respect to the time [4] which for the 
covariant and contravariant components of the unit 
normal vector to the wave layer has the form 

Dvi 
Dt 

Di/_ 
Dt 

8ui 
It GvmT?ni 

= £+-" (8) 

where 6/6t is the Thomas-derivative [4], and Tl
m 

the Christoffel symbols in the space. 

Noting that at h —► 0 the second terms in (7) may 
be neglected as compared with the first ones, from 
Eqs.(l-4) we obtain 

dql        „   dd     m   dv*    ' 
an an an 

,   dd „dqi 
Qi = -Ao-j-i'. + ToG—, 

an an 

dcr{i     _ _     dv{ 

dn   3 dn' 

„dan      .dv1 t' dvi dvj   \ 
-G^n~ = A7fa ^+" Ur"'+ to*) 
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de 
(9) 

(12) 

Integrating relationships (9) with respect to n from 
-A/2 to A/2 and going to the limit at A -» 0, we find 
that the following relationships should take place on 
S: 

[q% - Gc£[$] + T0y[viy = 0, 

0 =-\0[ff\vi + T0G[qi], 

[ffij]^ = -pG[V{], 

-G[<Tij] = \[vt]vlgij + n{{vi\vj + \vj\vi) 

+yG[e)gij, (10) 

where [Z] = Z+ -Z~. 

Considering that [vi] = uf.- + gijWx^, [vl] = 
uvi + Wx^, and w = [vi\v\ W7 = [t>,-]a:*7 from 
Eqs.(10) we obtain at w ^ 0 

(G2 - a2)(G2 - G\) - GVlbOw,)-1 = 0,    (11) 

[aij] = -G~l{ ly-ViVj + Xqij + p(G2 - G\)gij } u 

[vi] = UVi,     [ff\ = {yG)-ip{G2-G\)u> 

[qt] = Ao(roTG2)-V(G2 - G?)wi* 

where a2 = A0(TOC£)
-1

, and pG\ = A + 2fi, 

and at w = 0 
pG2 = pG2 = p., (13) 

[<7y] = -G^ßix^vigij + a^-flhOW1, 

[«.•] = *j*?iWrl (14) 
[   W* = b.] = [$] = 0 

Equation (11) defines the velocities G^ and G^ 
of two types of the volume waves of strong discon- 
tinuity: quasi-termal Ei and quasi-longitudinal £2, 
formulas (12) determine the relationships which are 
fulfilled on these waves. Equation (13) governs the 
velocity G^ of the quasi-transverse wave of strong 
discontinuity, and formulas (14) are responsible for 
the relationships which are valid on this wave. Here- 
after an upper index in brackets denotes an ordinal 
number of the wave. 

To determine changes in the intensities of the three 
waves during their propagation, we write Eqs.(l)-(4) 
on the different sides of the each wave surface and 
take the difference of the corresponding equations 
written ahead of and behind the wave front. Having 
regard for the conditions of compatibility for discon- 
tinuities in the first-order derivatives [4] in arbitrary 
coordinates 

[Z,i] = [Z,l]v1vi + g°«sgij[Z},axJ
ißl 

[Z] = -G[Z,i)u' + D[Z]/Dt (15) 

as a result we obtain 

Qiv' + gaß9iMU<ß ~ c<Gh + C<^T 

+T0y{LiS + gaß9ij [v'U^ß = 0        (16) 

[qi] = -XQhvi - \0gaß9ij{6},ax3ß 

D\st] +T0GQi-TQ- 
Di ' 

(17) 

D[v'] 
&VJ + gaßgij[<rijUxl,ß = -pGV + p-^-,   (18) 

-GSij + £jg*l = X9ij (Ltv< + gaß9!k[v'],ax>:ß) 

+n {UV, + LjVi +gaß9j![vi],axlß + gaßgub>jUxl
tß) 

+ 7W (<?&-§£), (19) 

where 5y = Wij.iW, &> = [«rJV, Li = [vi,i]v't 
Ü = [*;>', A = [e,i]vl, Qi = [«,■>'• 

Eliminating the values Qi from Eqs.(16) and (17) 
and the values Sy from Eqs.(18) and (19) and taking 
formulas (11)-(14), and the relationships 

(20) 

Dvi/Dt = Dv'/Dt = 0, 

1/   — —a"'1h     T* v a — — g     oaax ^ 

into account yields 

for the two quasi-longitudinal waves (w ^ 0) 

D" ±ro       n       a2(G2-G2) 

p{G2-G\)      ■    p{G2 + G\)Dw     2pG\ 
h ~ G^ Li W2       ~Dt + "W     ' 

and for the quasi-transverse wave wave (w = 0) 

^ = Gsiw,  w2 = w^vn, 
Dt 

DW 

(21) 

Dt 
DW. 

= GQ.W + GW'bl, 

-^ = GClWy-GWab°, (22) 

U^ = -W%,    A = 0, 

where fi is the mean curvature of each wave surface. 
baa are the coefficients of the second quadratic form 
of these surfaces, and b° = b^^g"". 

Since the volume waves cropping out at the free 
thermal-insulated torus surface cross each other gen- 
erating a surface wave, then the stress tensor and 
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heat flow vector components of each of the three vol- 
ume waves should be added together on the surface 
wave. As a result from the conditions (5) and (6) on 
the surface wave can be written as 

:'=1 

X>n](i) = 0,    X>i2](i) = 0, (23) 

(24) 
t=i 

Using the condition of compatibility, we arrive at 
the equation for determination of the Rayleigh wave 
velocity g 

G2~3(l-2G!«r2)2(G(1)+xG<2>) 

+4<T2 (v/l-G^iT2 + xs/l-GWg-2) 

xyfl-G2
2g-2=0 (25) 

and the differential equaton for defining its intensity 

^1 + aw(D + *     d) + &,(!) = o, (26) 
as R 

where 

G(2)2(G(l)2^G2)v/l_G(l)2g-2 

X "    GM*(GVV - G?)\/1-G(2>2<r2' 

s is the distance measured along the line of curvature, 
a, 7, and 6 are the constant coefficient dependng on 
the goemetric and maretial constants of the thermoe- 
lastic torus. 

The soluton to Equation (26) has the form 

x(d+Rsine)-K\ (27) 

where c is the arbitrary complex constant, 7* = — ij, 
K\ = —1K1, «2 = — ZK2; and Ki and «2 are constants. 

The investigations carried out show that during 
the propagation of nonstationary Rayleigh waves 
(lines of discontinuity) along the free from stresses 
and heat-insulated surfaces of a thermoelastic torus 
along the lines of curvature the intensities of these 
waves attenuate by exponential and power laws at a 
time; in so doing the exponential attenuation occurs 
due to the connectedness of the strain and tempera- 
ture fields, but the attenuation by the power law is 
caused by the presence of the time-dependent cur- 
vature of the surface wave. Besides the attenuation, 
the surface wave intensity oscillates with the time, in 
so doing the oscillation connects only with the cur- 
vature of the thermoelastic body surface. 
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Modelling of Concrete Behaviour at Elevated Temperatures 
within the Framework of Thermo-Plasticity 

G. Heinfling*, J.M. Reynouard* O. Merabet*, C. Duval** 

* URGC-Structures, INSA de Lyon, Bat 304, 20avA. Einstein, 69621 Villeurbanne Cedex, France 
** Division Mecanique des Structures, EDF-SEPTEN, 12-14 av Dutrievoz, 69628 Villeurbanne Cedex, France 

A numerical model for both compression and tension nonlinear behavior of concrete at elevated 
temperatures is presented here. A plasticity based model and algorithm for mode I cracking in 
concrete has been extended with temperature dependent properties. A fully implicit Elder backward 
algorithm has been applied to integrate the stresses and internal variables over a finite loading step. 
Thermo-mechanical interaction strains have been introduced to describe the influence of mechanical 
loading on the physical process of thermal expansion of concrete. Tests on plain concrete as well as 
on reinforced concrete structures have been simulated. 

Key Words: Thermoplasticity, Cracking, Concrete, Structures, High temperatures, Interaction 

1 Introduction 

In severe accidental situations such as nuclear 
disease or fire, concrete structures are submitted to 
transient high temperature distribution. High 
temperatures induce strong micro-structural changes 
that alter the mechanical behavior of concrete. 
Hence, a numerical model for concrete under such 
conditions must include major induced phenomena: 
highly temperature dependent mechanical properties 
of the material and influence of mechanical loading 
on the physical process of thermal expansion. Up to 
now, only few authors [l]-[2] have considered 
cracking behavior of concrete in combination with 
elevated thermal loading. Here, a plasticity model 
and algorithm for mode I cracking in concrete has 
been extended with temperature dependent 
properties. 

2 Plasticity based model for concrete 
at elevated temperatures 

2.1 ASSUMPTIONS 
Since no experimental data are available to 

evaluate the effect of the mechanical deformation 
process on the temperature field in concrete 
structures, the common approach of uncoupling the 
thermal and thermo-mechanical problems has been 
adopted. The total strain rate of concretes is 
decomposed into the sum of an elastic strain rate ec, 
a plastic strain rate sp, a thermal expansion strain 

rate ee and a thermo-mechanical interaction strain 
rates" 

8 = S   +S*+S   +fi (1) 

2.2 THERMO-MECHANICAL INTERACTION 
STRAINS 

Investigation tests on plain concrete [4]-[6] 
have shown that to describe the response of this 
material under combined thermal and mechanical 
action it is necessary to abandon the usual 
assumption mat thermal strain and mechanical strain 
can be treated as mutually independent components. 
Thermo-mechanical interaction strains have then to 
be taken into account. 

A generalised multiaxial state of stress model 
has been proposed by Thelandersson [5] and by de 
Borst and Peeters [1] and has been successfully 
incorporated by Khennane and Baker [7] in a thermo- 
plasticity model. Hence, according to de Borst and 
Peeters [1], the thermo-mechanical interaction strain 
rate can be written as : 

£ff=HaT (2) 

where a is the current stress vector, T is the rate of 
heating, and H, for an isotropic material and for a 
plane stress state is given: 

H = 
ak 
Fc 

1    -y 

-y   i 

0     0 

0 

0 

T(1+Y) 

(3) 

with a and f c, respectively the coefficient of 
thermal expansion and the compression strength of 
concrete, k and y can be evaluated from transient 
creep tests. For usual concrete, k varies from 1.8 [5] 
and 2.35 [11] and y has been found to be equal to 
0.285 [4]. 
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2.3 THERMO-PLASTICITY MODEL AND 
ALGORITHM 

A non smooth multisurface yield criterion is 
used to describe concrete behavior. Yield surfaces fj, 
are function of stress a, hardening parameter K , 
and temperature T. 

Ranldne Criterion 

Druckcr-Pragcr Criterion changing shape with temperature 

Fig.l. Yield surface in two dimensional space 

The Drucker-Prager type criterion used for 
compression behavior, expressed in equation (4), is 
able to capture the changing shape of failure surfaces 
with temperature. 

V3J7+ fP-1 
l2ß-l 

I,- ß 
Uß-U 

f.'=o (4) 

ß is the ratio of the biaxial compression strength to 
the uniaxial compression strength. The experimental 
strength envelopes obtained by Kordina et al [8] are 
shown in figure 2 together with the model curves. 
Agreement between predicted and experimental 
strength envelopes is acceptable. 

CTl/fc 
1.00         0.80 0.60 
-1 1- 

Fig.2. Biaxial compression strength envelopes 

The concrete model implemented by Georgin 
[9] in the finite element code CASTEM 2000 is 
based on Feenstra [3] with regard to cracked 
concrete. The plasticity condition fi(a,Ki,T) = 0is 

imposed on each active surface during the integration 
process. Assumptions commonly used in plasticity 
theory with regard to mechanical hardening are 
adopted: normality of the plastic flow and isotropic 

hardening. The isotropic Rankine flow theory 
proposed by Feenstra [3] is used to describe cracking 
behavior within the framework of plasticity. The 
ambiguity of plastic flow direction at the corner is 
removed by considering the contribution of each 
individual loading surface separately: 

da 8c (6) 

A trapezoidal Euler backward scheme proposed 
by Simo [10] is used. The updated stress vector on+I 

is obtained by solving the system of equations : 

= a„-D„ 
da ' dc (7) 

The subscript n+1 refers to the time step and 
D^, is the Hookee matrix at temperature T^,. The 
thermo-elastic predictor cc is obtained by freezing 
inelastic flow during the time step : 

Ce =Dn+l(ASn+I -As^n+l - As'n+l )+ ADs'n +Ö, 

(8) 

Solving system (7) finally consists of the 
determination of the inelastic multipliers which 
enforce the plasticity conditions at temperature Tn+1: 

f,(Al,,AA.2) = 0 
f2(Al1)AA,2)=0 (9) 

A local Newton-Raphson method is used to 
solve system (9). Figure 3 shows the iterative return 
mapping process corresponding to this algorithm for 
the general case where two plasticity criteria are 
violated. The superscript (i) refers to the internal 
iterations during the solving process. 

_   Jf,fc.K,..T..,)>0 
(JeV:(ct.K;n,T..,)>0 

^(c",.K,"'.T„,)>0 " 
f:(o

ll,.K,">,T..1)>0     (jlU/ 

ff,(o'i',K,«,T„.,)>0 
}f;(o"\K:'»,T„,)>0 

rj"   If.(CT.-K.»-T.)=o 
V^J1    }f:(a.,x,„T„)=0 

Fig.3. Iterative return mapping process 
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3 Simulations of tests on plain concrete 

3.1 BIAXIAL ISOTHERMAL TESTS 
Biaxial compression tests at different 

temperatures have been simulated. Figure 4 shows 
for example the stress-strain curve obtained at 450°C 
for CT/G2 = 1 together with the curve obtained by [8]. 
Simulation results emphasize a good description of 
the behavior of concrete under compression. 
Sensibility to hydrostatic pressure appears to be very 
important for high temperatures and high biaxial 
stress ratio. 
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Fig.4. Biaxial compression test at 450°C, o/a2=l 

3.2 STRESS AND TEMPERATURE HISTORIES 
The experiment conducted by Anderberg [11] 

has been simulated. The experiment consists, first, of 
heating a concrete specimen up to 400°C and then 
loading it, and second, loading a specimen to the 
required load and heating it under load. Figure 5 
presents simulation results in both loading cases. 
These results validate the capacity of this model to 
describe stress and temperature history dependency. 

Stain (X 10-3) 

jnr.'.mvA'.w.vv.w              cwveM 

4.00 
?/"  / \ 7$               /        *         Experiment 

ff       Applied          y           /      ..   . . ,,„„„„„            #              .         Simulation 3.00 

n        Kl J 
2.00 7*                             ;              *^-/-«-'©»«-9« " 

//                    !            / 
1.00 ■ a 

V 
$T                     LadslilsaJiiaissl .00 

Expennent 

-1.00 

\                                          Simulation                / 

'^^^m^nmm ÜTTI y^» >' 

-2.00 .    —i 1 1 1 1         '  

7     Timc(b) 

» "< 
Heating Constant tempaarure:4<l0oC 

Fig.5. Deformational response of concrete under two 
different load and temperature histories 

3.3 BIAXIAL TRANSIENT TESTS 
Relaxation tests performed by Kordina et al [8] 

have been simulated. Figure 6 shows the model 
prediction for a relaxation test under uniaxial 
conditions for a normally stored concrete (20°C / 
65% r.h.). Agreement between experimental and 
numerical results can be considered relatively good. 
Between 100°C and 250°C, shrinkage has been 
explicitly taken into account by decreasing strongly 
the coefficient of thermal expansion of concrete in 
this temperature range. The third peak of stress 
arising between 500°C and 600°C on the 
experimental curve results from chemical changes in 
concrete. This has not been modelled here. 
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Fig.6. Restrained stress as function of temperature for 
a normal stored concrete specimen (65% r.h.) 

Finally, transient creep tests performed by 
Kordina et al [8] have been simulated too. Numerical 
results emphasize that thermc-mechanical interaction 
strains have to be taken into account and that the 
presence of a sustained load during heating affects 
concrete behavior. Figure 7 shows for example the 
deformational behavior of a concrete specimen for a 
biaxial sustained load of 60% of the ultimate 
compressive strength. 

Vt   ■ 

4 Analysis 
IM neglected 

7 Analysis 
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Fig.7. Total deformation of concrete during biaxial 
transient creep test, (load level 60% f c) 
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4 Simulations of deep beams subjected 
to transient high temperature distribution 

Reinforced concrete deep beams subjected to an 
elevated surface temperature performed by Saito et al 
[12] have been simulated. The beams were first 
heated up to a certain surface temperature whereafter 
they were loaded to failure. Figure 8a presents the 
geometry of the tests. Reinforcement steel has been 
considered temperature dependent elastic-perfectly- 
plastic. Agreement between numerical and 
experimental results can be considered good. Figure 
8b presents the global response of beam S3C heated 
up to 300° C. Figure 8c presents simulated and 
experimental crack pattern at failure. The results 
validate the capacity of the proposed crack model to 
describe accurately crack propagation in structures 
subjected to elevated temperatures. 
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Fig.8a. Geometiy of the tests 
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Fig.8b. Load-deflection curve for beam S3C. 

Experimental observed cracks at failure 

Simulated crack pattern at failure 
Fig.8c. Crack pattern at failure for beam S3C. 

5 Conclusions 

A model has been discussed for the analysis of 
concrete and reinforced concrete structures subjected 
to high temperatures. In particular, effectiveness and 
accuracy of a thermo-plasticity based model for 
cracking in concrete has been presented. The model 
used for thermo-mechanical interaction strains 
appeared to be suitable for this formulation and 
major effects of this phenomenon have been 
captured. A study has been undertaken concerning 
coupling of pore pressures appearing in concrete at 
elevated temperatures with this model. The 
perspectives of this study are interesting since 
spalling is a major issue for the assessment of 
integrity of high strength concrete structures 
subjected to elevated temperatures. 
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Localization of Thermoelastoplastic Deformations 
in the Case of Simple Shear 
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Center of Mechanics, Institute of Fundamental Technological Research of Polish Academy of 
Sciences, ul. Swietokrzyska 21, 00-049 Warsaw, Poland 

The results of tests of quasistatic and dynamic finite thermoelastoplastic plane shear is 
discussed. Use is made of a new shear device in which loading and displacements are controlled in 
compression. Using the thermovision technique the temperature changes of the sheared paths have 
been registered for various shear rates. The rate-independent constitutive relations are formulated for 
elastic-plastic metallic solids at finite strain. The constitutive relations are considered for an 
adiabatic process with combined isotropic-kinematic hardening. The analogous initial-boundary- 
value problem as in the experiment of simple shear is formulated for finite deformations. An 
exceptional homogeneity of lie permanent strain and temperature fields is observed in experiments 
and numerical simulations, over the total length of the specimens, when the strain is less than 70%. 
For the largest deformations the zones of strain localization are observed. 

Key Words: Plasticity, Dynamic Problem, Simple Shear, Strain Localization, Metal Sheets 

1. Introduction 

Numerical systems allow us to simulate the 
mechanical behaviour of thin-walled constructions, 
such as bodies of automobiles, buses, shells of 
wagons, air-planes, etc., submitted to the impact 
loading. Such systems require the knowledge of the 
dynamical behaviour of thin sheets of which these 
constructions are made. The mechanical characte- 
ristics of the thin-walled constructions are dependent 
on the metallurgical composition of the metal as well 
as on the manner of its production. It is indispensable 
to have the experimental data concerning this specific 
form of material. Tests in the case of simple shear are 
very important for the experimental investigation of 
the constitutive equations of materials. These 
experiments are supplementary to other tests realised 
in traction as well in compression or in pure shear. 

A new shear device was used to perform tests of 
specimens having the form of slab such as metal 
sheets [1]. The loading and the displacements of this 
device are controlled by a Split Hopkinson Pressure 
Bar (SHPB) acting in compression. The special 
device was used to transform the compression to 
simple plane shear. For thin sheets in dynamic simple 
plane shear tests, it is the only known method to 
obtain a very good homogeneity of the permanent 
strain field over the total length of the specimen, 
without the localisation of deformations as in the case 
of torsion of thin-walled tubes [5]. 

The analogous initial-boundary-value problem 
of the simple shear was formulated in the case of 

finite strains. We consider the rate-independent 
constitutive relations for an adiabatic process with 
combined kinematic-isotropic hardening at moderate 
pressures. The analytical solution is compared with 
the experimental data. The numerical calculations 
performed enabled the evaluation of the optimal 
dimensions of the specimen used in the case of 
dynamic loading. 

2. Experiment 

The shear device consists of two coaxial 
cylindrical parts (the external part is tubular and the 
internal part is massive). Both cylinders are divided 
into two symmetrical parts between which the sheet 
in testing is fixed. Two bands of the specimen 
between the internal and external parts of the device 
are in plane shear when these cylinders move axially 
one toward the other. Each band before test is 
rectangular and becomes almost a parallelogram 
having the constant length and the constant height. 

First, the system is tested under quasi-static 
loading in order to verify its effectiveness. The 
dynamic test is similar but the loading is realized by 
the SHPB. The device with specimen is placed 
between two bars of the SHPB. In this case the 
mechanical impedance of the shear device and of the 
SHPB must be the same to avoid the noise in the 
interface signal. The impulse is created by the third 
projectile bar: the usual compression technique. We 
have to register the input, transmitted and reflected 
impulses: %, 5 and Sr. 

The specimens deformed quasi-statically or dyna 
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mically to 70 - 90 % as observed under the optical 
microscope, have a similar structure. The traversal 
lines marked on the specimens, on the gauge section, 
before the test remain parallel after the test. This fact 
indicate that the deformation is homogeneous in the 
considerable part of the specimen. However, the 
presence of free bounds of specimen produces the 
heterogeneity of stress field because the stress vector 
normal to the free surfaces must be zero, therefore we 
have assumed that the dimensions of the perturbed 
zone are small as compared to the dimensions of the 
specimen. The exceptional qualities of the 
homogeneity of the residual strain field show that the 
simplified analysis can be used in the zone of plastic 
deformations. 

At the deformation of the order 70%, in the case 
of high strain rate we observe the formation of the 
tangled structure and of the dislocations cells. Then- 
elongation and arrangement tend to be aligned along 
the length of the shear direction. In several grains the 
micro-bands of shear, parallel to the direction of Xj 
axis (axis of compression) are observed. At the very 
high strain rate the shear macro-bands are observed. 
We can suppose that it is a critical strain at which the 
shear localization occurs. Before arriving at the 
critical strain, the deformation is homogeneous over 
the whole gauge length of the specimen. The work- 
hardening results from the creation, multiplication 
and interaction of the dislocations. In this case, a 
small part of the work of plastic deformation is stored 
in the material as elastic strain energy (about 6%) and 
the remaining part is converted into heat In the paper 
[4] the temperature field due to plastic deformation is 
measured. The quasistatic tests on the behavior of 
stainless steel are performed. The goal of this paper 
was to obtain the mechanical curves as well as the 
temperature distributions in the simple plane shear 
areas. A change of temperature of the surface of these 
areas has been observed by the thermovision camera 
coupled with a system of data acquisition and 
conversion. The infrared radiation emitted by shear 
paths was measured. The results obtained enable 
present the temperature changes of the specimens 
subjected to the shear test with different rates of 
deformation, as well as to describe the macroscopic 
shear band, which develops at higher deformations. 
With this technique, it is possible to evaluate the 
stored energy due to the simple shear in the case of 
large deformations. 

In the analysis, we must take into account that 
the loading of the specimen is not instantaneous. The 
loading compression wave must take some time to 
transmit from one end of the device to the other. 
However, in our tests, we have a very good 
equilibrium of forces on two sides of the shear device. 
We observe that the input and the output forces are 
very similar in shape (neglecting the small 
oscillations of the input force). So, in the simplified 
analysis we assume that the loading is homogeneous 

and we proceed as in the case of quasi-static loading. 
The force is taken to be equal to the mean value of 
input and output force. 

3. Theoretical simple shear analysis 

The simple shear in the direction ei in the 
coordinate system (d, ei) is defined by the relations 

ul=r(t)x2,v-i=yx2andu2=u3=v2=v3 = 0     (1) 

where y = sn and y are the plastic shear strain and 
shear strain rate, respectively. 

In the axis of x, the Cauchy stress tensor a and 
the back stress II have the following non-zero 
components: <ju, O22 , On.- and nnt n22 , itn.- The 
presence of au and a22 is due to the feet that the 
distance between two parts of the shear device is 
constant during experiment i.e. a = a0 = const 

The change in the temperature field & is 
described as 

Po^ =   1 JL&aT\tT< 
CTy      Ö7C 

(T-n)-Dp-^divq- 

-& «„üTj-^trD-^n-DP 
P c 

(2) 

where & is the temperature, q is the heat flux, ?ris the 
function determined from the stored energy [3], a? is 
volumetric thermal expansion, KT is the isothermal 
bulk modulus, cv is specific heat at constant volume, 
cT and c are constants [3]. In this relation terms of the 
right hand side denote: the dissipation of mechanical 
work, the heat exchange with environment the heat 
of elastic deformations and the heat of internal 
rearrangement respectively. 

Using the rate-independent constitutive relations 
for the adiabatic process with combined isotropic- 
kinematic hardening at moderate pressures, and 
neglecting the thermal expansion, the heat of elastic 
deformation and the heat of internal rearrangement 
we have the following set of equations [3] (these 
equation are similar in form to those employed in 
problems of small strains but are applicable to the 
whole range of deformation processes): 

T = /?LD- 3j///?D-(T-n)r,- 

oiK 
[(T-ID+P](3) 

J = 
1   if   / = 0   and   D-(T-II)>0, 

0   if   / = 0   and   D-(T-ri)<0   or   /<0. 

where ß = p0l p is the ratio of densities in the 
reference and the actual configurations, T = ß a , 
T=T-©T+T©   is the Zaremba-Jaumann rate, T 
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is the deviatoric part of T , L is the fourth order 
tensor of elastic moduli, // is the Lame constant and/ 
is the Huber-Mises yield criterion 

/ = |(f-ID-(f-Il)-af(^a) = 0    (4) 

here of is the yield stress in simple tension and a 
corresponds to lie size of the yield surface 

ä=(T-II)-Dp (5) 

The shift of the yield surface here is represented by 
the back stress II for which the evolution law has the 
form of a linear kinematic hardening 

n=cDp 
(6) 

where c = const and Dp is the plastic rate of 
deformation. The change in the temperature is 
described as 

p0c>=(l-^)(T-ID-Dp       (7) 

The first term on the right hand side of (7) 
represents the rate of energy dissipation and, 
therefore, ;riess then 1. For numerous metals stakes 
the value from 0.02 to 0.1. In the equation (3) H is 
the hardening function 

2fiß   6fiß   da      6ßßp0cv   dS 

and tensor P is obtained by expressing the term (<D
P
 T 

+ T a1) as a function of Dp where <ap is the plastic 
spin. 

The equation for plastic spin can be assumed to 
be, according to Dafalias, Paulun and Pecherski [2] 
and others in the following form 

top=77(IIDp-Dpn) (9) 

where rj may depend on the invariants of If and EL 
In the case of plane simple shear we have ß - 1 

and the equations above lead to 

^ 12-X°"n-r[A-^-(o-i2 -«"12 - Mo-,,) 

nu-rnu=-z£y(cyu-nu),   o„ = - o22 

(10) 

here M = — l^ni^n-^n)-^n(0'u-'rii)]an(i 

Wl =^^12^12)'     W2 = -^2"(ff12-«'l2) 
ijc_ 

Here, we use the relation for the multiplying function 
rj occurring in the expression of plastic spin (9), in 
the form proposed in the paper [2]. 

In the case of plasticity with kinematic 
hardening we also have the analytical solutions. Then 
Or = const and now from (8) we have H = 1+c/2fi. 
Finally, after several calculations, we find the Cauchy 
stress components an. On and the back stress 
components nu. K& 

c   .     , ...      cos^ 
Kn = —r(COS0-COS^ )— — ii    2^\    Y        

r/(l-acos<*) 

c ,     ,        ,»s     sin^ 
2ft (l-acos$ 
c ,     , ...      cos^ 

2ft (1-acos^) 

(11) 

°"12- 2H 
(cos^-cos^*) 

sin< 
(1-acos^ 

+&0cos^ 

+£0sin^ 

where a = f//k0, k0 = o-r/iß is the yield Value in 

shear,    / and 4 are constants. Integrating the 
equation (7) the temperature field can be determined 

Fig. 1. Shear stress On and normal stress an vs. 
shear strain for kinematic hardening. 

Solutions for stresses o>; and a12 in 
dimensionless form vs. shear strain y, illustrated in 
Fig. 1, are obtained for kinematic hardening, with n - 
8 104 MPa, c = 5333,33 MPa, ka /n = 0.0577. In the 
case of large plastic deformations the ratio CTH/<J12 

and O22/012 are much higher than in the case of small 
elastic deformations. 

4. Numerical simulations of the experiment 

A finite element method program was used for 
the numerical simulations of the formulated problem 
of quasistatic and dynamic simple shear of thin 
sheets. We assume the similar initial and boundary 
conditions as in the experiment. In the case of 
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dynamic deformations a simplified supposition is 
introduced. The process of wave propagation in the 
specimen is neglected. Due to the excellent 
equilibrium of input and output forces and quasi- 
constant value in the time period 50 us < t < 500 us, 
we can treated our problem as quasistatic using a 
rate-independent constitutive equations. The 
amplitude of loading is determined from the dynamic 
experiment. We assume that in the contact between 
the specimen and bars the force is constant in time. 

In the finite element method a rectangular mesh 
is introduced. Deformation of the mesh in time is 
determined. In the same time the components of the 
stress tensor a12 and a22 = -On, the intensity of stress 
Oi = (3/2 Sij Sij)m, the equivalent strain e, = (2/3 s/ 
Sif)m and the temperature field are determined. First, 
the numerical simulation was made for the quasistatic 
loading of the sheet of stainless steel 1H18N9T, with 
ß = 8-104 MPa, p = 7.8 g/cm3 and a, = 280 MPa. 

y= 0.102 

Y= 0.332 

y= 0.741 

J=0-912 

Fig. 2. Equivalent deformation. 

Results of numerical simulation in the specimen 
subjected to the quasistatic simple shear are shown in 
Fig. 2. The equivalent deformation field is shown for 
a half part of the shear zone of the specimen. The 
deformation process is non-symmetric with respect to 
the axis x2. Successive sequences are presented for 
different values of shear strain defined as y= Al(t)/a„, 
from y = 10.2 % to y = 91.2 %. We observe for 
example the heterogeneity of the strain and stress 
fields at the free bounds of the specimen at the 
distance less than 1 % of the total length when the 
strain is 30% and less than 5 % of the total length 
when the strain is 70 %, exactly as in the 
experiments. 

The shear zones are manifested by a significant 
temperature increase. At the ends of shear zones the 
theoretical predicted fields of strain heterogeneities 
are  manifested by the  increase of temperature, 

particularly noticeable in the initial stage of shear. As 
the deformation continues, the line describing the 
position of maximum temperature departs from the 
shear direction. It gives evidence for the development 
of the macroscopic shear band, running along the 
specimen at a certain angle to the direction of shear. 

5. Conclusions 

An exceptional homogeneity of the permanent 
strain field at finite deformations over the total length 
of the specimens is observed in experiments and in 
the results of numerical simulation. In the case of a 
thin sheet, the proposed method is the only known 
test providing, homogeneous stress and strain fields 
in both dynamic and static tests. The method can be 
used to verify the proposed constitutive relations. 

The simple shear test is particularly attractive, 
since the application of this type of loading path can 
result in large strains without the occurrence of 
plastic instability. But, after a certain strain on the 
order of 70-90%, the deformation becomes gradually 
localized. The material begins to be work-softening 
until fracture occurs. 

Investigation of temperature distribution on the 
surface of the shear paths confirm the existence of the 
theoretically predicted fields of strain heterogeneity. 
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The optimal (in the sense of rapidity) problem of control by heating of thermosensitive solids of 
canonical forms (unbounded strip, hollow and continuous cylinder and sphere) under restric- 
tions on the control function and maximal value of intensity of tangential thermostresses is 
considered. A case of elastoplastic deformation of solids under consideration is investigated 
within the theory of processes of deformation on the trajectories of small curvature. An algo- 
rithm of construction of numerical solution of the control problem is elaborated on the basis of 
a method of inverse problem of thermomechanics. Some numerical results of calculations are 
presented for typical data. 
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1. Introduction 

The thermal processing of materials is often a 
constituent part of technological processes of 
manufacturing of design elements. Minimization of 
time of heating (cooling) of an item is one of fac- 
tors, essentially influencing productivity of such 
processes. For maintenance of appropriate 
strength characteristics and functional properties 
of an item at determination of optimal regimes of 
its quickest heating (cooling) it is necessary to take 
into account the given restrictions on parameters 
of stressed and thermal states [1], [2].The problems 
of the quickest heating of a body are also urgent 
for optimization of transient regimes of operation 
of responsible details and units of power equip- 
ment under conditions of intensive heat load. 

In this paper the mathematical statement of 
the optimal (in the sense of rapidity) problem of 
control by heating of thermosensitive canonical 
solids (unbounded strip, hollow and continuous 
cylinder and sphere) under restrictions on control 
function and maximal value of intensity of tan- 
gential stresses is formulated for a case of elasto- 
plastic deformation of material. The numerical al- 
gorithm for solving this problem is elaborated on 
the basis of a method of inverse problem of ther- 
momechanics. 

1. Formulation of the problem 

Let a non-stationary temperature field in an iso- 
tropic piecewise-homogeneous body satisfies the 
heat conductivity equation 

dT 
!h 

k<p<\    r > 0    j = 1,2,3 
and the boundary and initial conditions 

X(T,k)^^-Hl(T){T{k,r)-tl(r)) = 0        (2) 

Ä(T,l)^^-+Hl(T){l{l,T)-ti(T)) = 0 (3) 

T\p,0) = f(p)     k<p<\ (4) 

where X(T,p)=X.(T,p)l X0 is the non- 

dimensional heat conductivity; cr(T,p) = 

c*(T,p)/c° is the specific non-dimensional heat 
V V 

capacity; X, (T,p), c* (T,p) are the thermal con- 
ductivity and the specific heat capacity, respec- 
tively; X0, c° are certain constants;    p = x/R2, 

r = X0t* IC^RI are non-dimensional coordinate 

and Fourier criterion; x, r* are the spatial coordi- 

nate and time; k = 0 for unbounded strip [j = 0) 

and continuous cylinder [j = l) and sphere [j = 2); 

k = Ä, / ,R2 for hollow cylinder and sphere; 

H(T) = a\T)R IX (z = 1,2) denote non- 

dimensional heat transfer coefficients; 
a-(f)   (z = l,2)   are   heat   transfer   coefficients; 

tAT) [i = 1,2) are the temperatures of surround- 

ing mediums. 
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We consider a case of elastoplastic defor- 
mation of material. The relations, which describe 
non-isothermic elastoplastic processes of deforma- 
tion on trajectories of small curvature [3], are cho- 
sen as the governing equations of state. The ther- 
mal and mechanical characteristics are assumed to 
depend on temperature and spatial coordinate. For 
piecewise-homogeneous solid they are expressed be 
means the aim of asymmetric step functions as for 
the whole body [4] 

p{T,p) = p,{f)+'lZ{pM{T)-Pi{T))S_{p-pi) 
1=1 

where 

S-(X): 
0   JC<0 

[1   x>Q 
n is a number of layers; / denotes the i -th layer; 
Pi is coordinate of interface between the i -th and 
layer and (i +1) -th layers. 

The optimization problem consists in de- 
termination of such control u{r) (the temperature 

of heating medium ^(rjon one of boundary sur- 
face), which satisfies the condition 

\U{T)\<U(T)   T>0 (5) 

and the restriction on maximal value of intensity of 
tangential stresses 

max.S(7)<;S.(7) k<p<L\ (6) 

and provides heating of the body from the initial 
state (4) to the final state 

T*=TI^{piT{P'r>)dP   .7 = 0,1,2 (7) 

over the minimum time r. = minr. Here U{?) de- 
notes the boundary admitted value of the control 

function; 5=l-j^..j is the intensity of tan- 

gential stresses; sv (ij = 1,2,3) are the stress de- 

viator components [3];  S.  denotes the boundary 
admitted value of the intensity of tangential 
stresses. 

As the restriction (6) in a method of inverse 
problem of thermomechanics we can choose the 
following restrictions: 
on maximal value of magnitude of accumulated 
plastic strain 

maxÄp^Ä^     k<p<\ 
p 

on maximal temperature difference 
max7(p,T.)-min7^p,r,)<^r    k<p<\ 

p p 

on gradients of temperature field 

^M<S,(7)   Sj(7)>0 

or 

-f^->S2(T)   S2(T)<Q 

on velocity of temperature change 

on maximal temperature 
nw.T(p,T,)< T0     T0 = const   k<p<\ 

p 

and etc. 

2. Solution of the problem 

According to a method of inverse problem of 
thermomechanics [5], [6] the optimal (in the sense 
of rapidity) control is equal to the boundary ad- 
mitted restriction 

U(T) = U(T) (9) 
or provides the fulfillment of equality 

max5(7) = 5.(r)   k<p<\ (10) 

Therefore, the solution of the optimal prob- 
lem of control by heating (l)-(7) is constructed us- 
ing stage by stage algorithm. 

1. On the first stage it is assumed that the 
initial distribution of temperature field f{p) satis- 
fies the condition (6), and the direct problem of 
thermoplasticity is solved under condition (9). 

The solution of the nonlinear heat conductiv- 
ity problem is determined numerically using the fi- 
nite-element method [7]-[9]. According to this 
method for finding unknown values of temperature 
at discretization points 7/(r) we obtain the follow- 
ing system 

N 

z 
!=0 

a, T,(T +AT)-tyr) T^r + A^+tyr)) 

Ar 

= ^-(T + AT/2)   i = 0,N (11) 

where Cu , F^,   are the coefficients of matrix of the 
heat capacity and heat conductivity, respectively; 
Fj denote the right-hand side vector components; 
Ar is the time step. 

The stressed-strained state of a body is de- 
termined from the solution of thermoelasticity 
problem. It is assumed that a body is free from ex- 
ternal loads. The physical relations of the above- 
mentioned theory of thermoplasticity are as follow- 
ing 

. dsu deif =—- 11     2G 

su   dG 
.-2-—dT+de}, 
2G2 dT v 

P) 

delf)=(FsdS+FTdT)sij   i,j= 1,2,3       (12) 

where Fs and FT are determined on the base of 
surface the    instantaneous    thermomechanical 

a = f(e,T) as 

FS^(±-JL) 
2a {.Ei    E) 1     de 

77      3 (de FT = — — + - 
2a\ST   i E2 dT) 
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Here ey = eij-e0öij v   ~   y are the deviator 

components of the total and plastic strains; Sy, 

s\f' are the tensor components of the total and 

plastic strains;  e0 ={su +f22 +si3j/3;  cry    are 

the stress tensor components;   G   is the shear 
modulus; E is the Young modulus; Sy denotes 

Kronecker delta;   s   is the total instantaneous 
strain [3]. 

The nonlinear thermoelasticity problem is 
linearized according to a method of additional 
strains [3], [10]. Therefore, the stress-strain rela- 
tions are as follows 

En 
y      l + vn 

1 + Vn 

y    l-2vn 

(s0-S°)Sy 

\-2v. 
■ST5y i.j = 1,2,3 (13) 

The relations (13) express the Hooke low for iso- 
tropic homogeneous solid with the additional 
strains 

*'     E0(l + v)£»   +{l    E0(l + v)K»    *') 

-J °^{s,-sT)öy    i.j =1,2,3   (14) 
£oO- H 

Here sT is the thermal strain; v is Poisson's ratio; 
E0, v0 are certain constants. 

The additional strains (14), which character- 
ize deviation of equations (13) from Hooke low, 
take into account the plastic deformation of mate- 
rial and dependence of mechanical parameters on 
temperature. 

The solution of elasticity problem for solids 
under consideration can be expressed in the ana- 
lytical form using relations (13), (14). 

Thus, the solution of thermoplasticity prob- 
lem is reduced to a sequence of thermoelasticity 
problems for isotropic homogeneous solid with 
additional strains. The plastic strains are deter- 
mined using a successive approximation method 
the base of instanttaneous thermomechanical sur- 
face [3]. 

2. At the time moment . r = rÄ, when the 
maximal value of intensity of tangential stresses 
approaches the boundary admitted restriction we 
begin to solve the inverse thermoplasticity prob- 
lem. Hence, it is necessary to find the heat influ- 
ence - control function K(T) taking into account 
the given boundary admitted restriction of the in- 
tensity of tangential stresses 5.(7). For determin- 
ing the control function a discrete analog of the 
heat conductivity problem with unknown function 
U(T) is completted by condition (10). This condi- 
tion can be written as a relation dependeding on 
temperature and additional strains on the base of 

the analytical solution of the direct problem of 
thermoplasticity. 

Unknown distribution of the plastic strains 
and control function at the time moment under 
consideration are determined using a successive 

approximation method. Plastic strains le)f '\ 

are chosen as initial approximation for plastic 

strains (4"f- The initial approximation of the 

additional strains is calculated by formula (14) and 
the solution of the expanded system (10), (11) is 
determined using the iteration method. On the base 
of the obtained initial approximation of the con- 
trol function we can find the first approximation of 
the plastic srtains at the given time moment by 
solving the direct problem of thermoplasticity. 
Owing to formula (14) we can calculated a new 
approximation of the additional strains and find 
the first approximation of the control function as 
the solution of the inverse thermoplasticity prob- 
lem. The process of successive approximations is 
finished when the condition 

is satisfied. Here u^1', u^' denote two successive 
approximations of the control function; Su is the 
precision of solving the control problem. 

When the control function u(r) approaches 
the boundary admitted value the control problem 
is solved according to the first stage of the con- 
structed algorythm. The calculations are finished 
when the final condition of heating (7) is satisfied. 

3. Numerical results 

As an example we consider the optimal (in 
the sense of rapidity) problem of control by heat- 
ing two-layer unbounded hollow cylinder. The first 
layer is made from steel EI-437 and the second 
layer is made from steel SP-28. The physical and 
mechanical characteristics of materials are given in 
the work [11]. It is assumed that the initial tem- 
perature is 20 ° C and the inner surface p = 0.2 of 
the cylinder is heat insulated. The time distribution 
of the temperature of heating medium on the sur-: 
face p = 1 is shown on Fig.l by the dashed line 4. 
It is assumed that H2 = 10 and that the conditions 
of ideal heat and mechanical contacts are fulfilled 
at the point p = 0.€. 

The time distribution of maximal value of in- 
tensity of tangential stresses, maximal and minimal 
temperatures are shown on Fig.l by the dashed 
lines 1-3, respectively. The optimal (in the sense of 
rapidity) regime of change of heating medium 
temperature is shown on Fig.l by continuous line 4 
under conditions [7 = 700 ° C, S(7) = 440 MPa, 

T, = 190 ° C. The behavior of the maximal value 
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of intensity of tangential stresses, maximum and 
minimum temperature are shown on Fig. 1 by con- 
tinuous lines 1-3. It can be seen from this figure the 
optimal control consists of three stages. At the first 
[0,r,] and third [T2,r„] stages the optimal con- 
trol is equal to boundary admitted restriction and 
at the second stage [T,,72] provides the fulfill- 
ment of equality (10). 

800 -i 

Yi   103 

Fig. 1. Distribution of the maximal 
value of intensity of tangential stresses 
(1), maximal (2) and rninimal (3) tem- 
perature and optimal control (4). 

The numerical analysis shows that the con- 
ditions of the ideal heat and mechanical contact is 
fulfilled at the point of interface between layers in 
the hollow cylinder. 

For estimation of plausibility of used equa- 
tions of state the trajectories of deformation are 
constructed in the two-dimensional Ilyushin space 
yi0y2 [3], [11] at the point p= 1.0. The trajectory 
of deformation, when the condition (10) is fulfilled, 
is shown in Fig. 2. by continuous line. The dashed 
line shows the trajectory of deformation whith no 
restriction on the maximal value of intensity of 
tangential stresses. The point M on Fig.2. core- 
sponds to the time moment r = r, and points Nl 

and N2 correspond to moment of unloading. 
The estimation of values of curvature radia 

of constructed trajectories shows that they are tra- 
jectories of small curvature. That confirms a pos- 
sibility of applying the relations of the theory of 
deformation processes on the trajectories of small 
curvature for finding the strained-stressed state of 
the hollow cylinder. 

1.5 n 

ttOs 

Fig. 2. Trajectories of deformation at 
the point p = 1.0 
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Temperature Dependent Yield Stress 
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Elastic-plastic associative materials endowed with internal variables and obeying suitable 
thermo-plastic yielding laws are considered in the hypothesis that the yield function is convex 
(with respect to all arguments, including temperature), and that creep and thermal coupling 
phenomena are negligible. For structures composed of the above material and subjected to 
thermo-mechanical load programs, the static and kinematic shakedown theorem are restated. 

Key Words: Thermoplasticity, Internal variables, Shakedown, 

1. Introduction 

The classic static and kinematic shakedown 
theorems [1-4] are well known analytical tools to 
characterize a specific limit state of elastic-plastic 
(thermally uncoupled) structures subjected to thermo- 
mechanical load programs. For load programs below 
the shakedown limit load, after a transient phase 
during which some limited plastic deformations 
occur, the structure responds elastically to the 
following thermo-mechanical loads —i.e. (elastic) 
shakedown occurs. The above theorems hold good 
also in the case in which the material yield stress is 
temperature dependent, provided that the thermal 
effects on the stress and on the yield function are 
taken into account for every possible thermo- 
mechanical load condition [5-8]. The latter 
requirement has heavy computational consequences. 
Additionally, when the yield stress is nonlinearly 
related to temperature, the kinematic theorem does 
not provide an upper bound statement for the 
shakedown limit load. 

In a recent paper [13], these authors have 
addressed the above shakedown problem within the 
framework of a thermo-plasticity theory in the 
hypothesis that the yield function is convex in the 
space of all its arguments [9,10]. In the present paper 
internal variables are considered in order to account 
for the material hardening behaviour. Associative and 
thermally uncoupled plasticity is considered. The key 
idea is that entropy production is the sum of two 

contributions, one related to the independent state 
variables, another related to the yield stress variation 
through temperature [10]. 

2. Thermodynamic considerations 

Disregarding, for simplicity, heat propagation 
phenomena, the first thermodynamics principle can 
be written as [10]: 

u=aze (1) 

where u = u(se,rf,t) is the internal energy density 

function, which depends on the elastic strain se, the 
"reversible" entropy tf, and the internal variables £; 

also, a is the stress, s the total strain rate. Denoting 
by T the absolute temperature and introducing the 

free energy y = u-Trf = u-T(-r\-if), eqn (1) 
can be rewritten 

T f| = o:e - \j/ - r\e f + Ti\p. (2) 

The l.h. side of (2), in absence of heat propagation, 
represents the entropy production rate which, by the 
second thermodynamics principle, is nonnegative, i.e. 

aze-y-j\et + Ti\p>0 (3) 

which is the relevant Clausius-Duhem inequality. 
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Let y be assumed in the form 

\|/ = H»e(se,r)+V,„(t7'). (4) 

Substituting  eqn  (4)  into   (3)  and  noting  that 
s. = se +ep gives: 

d£e)      \     er ) 

+ <r.ep+Ti\p- 

dT 

3§ 

(5) 

5^0 

Using  classical  arguments,  we  obtain the  state 
equations as 

„ _ 8 Ve          „e_     &V o = , Tl   =  x = ^      (5) 
dT "       "     8E, 

as well as the dissipation density function, i.e. 

aiep+Ti\p-x:E,ZO. (7) 

3. Associative thermo-plastic yielding laws 

The material yielding function is assumed to 
depend on the state variables CT, T=T0+ 9 and %, the 
thermodynamic forces related to the plastic mech- 
anism variables (ep,i\p,i ), i.e. /(o\9,x )<0, 
where by hypothesis/ is smooth and convex with 
respect to all variables, including temperature. The 
thermo-plastic yielding laws are assumed as follows: 

8*=*. 
da' *-*!£•   «--*£ <" 

/(a,9,x)^0,       X>0,       Xf(a,e,X) = 0    (7b) 

where i. is the consistency (or plastic) coefficient and 
the complementarity conditions (7b) account for the 
loading/unloading rule. Equations (7a,b) comply with 
the general normality rule to the yield surface f=0 in 
the (CT,0,X) -space. 

Due to the convexity off, the inequality 

The equality sign holds in eqn (8) if, and only if, 
either 6^ = 0, V = 0, § = © (in which case, 

CT,8and% may be different from o\ 9andx), or 

o- = CT, 9 = 9, % = x (in which case kp,r\p£ may 

be different from zero). Equation (8) is equivalent to a 
statement of maximum thermoplastic dissipation, 
which is the thermoplastic equivalent of HUl-Drucker 
[1,2] inequality. Thus, we can write (dropping the 
upper bars): 

«i wö-^tfM'+r*' -%:k) 
subject to:   /(CT,9,X)£0 

(9) 

where T = T0 + 0 and T0 = ambient absolute 
temperature. The maximization problem (9) 
represents the maximum plastic dissipation theorem 
for the considered material. The Kuhn-Tucker 
conditions of problem (9) coincide with eqns. (7a,b). 

4. The structural shakedown problem 

A structure composed of the above material is 
subjected to thermo-mechanical loadings which vary 
in time in a quasi-static manner and depends on a set 
of independent parameters, say P = (P1 , P6), P1, for 
mechanical loads, P9 for thermal loads. P*" and P6 are 
allowed to vary arbitrarily within the (closed) 
domains nL and if, which are assumed as poryedra 
of, respectively, m\ and me vertices. Thus P vary 
within n = nL x if, with /n= nt • m6 vertices. The 
vectors  Pfo   k el(m) = {\2,...m},   specifying  the 

positions of these vectors, are referred to as the basic 
thermo-mechanical loads. Any P inside n can be 
represented as [12,13]: 

(10) 

where the ys coefficients must satisfy the admissibility 
conditions: 

,     _x . „    /     -s._    .     _. . Yt ä0, for all fc el(m), 
(c-a):zp +(e-e)i]p -(x-x):^0     (8) 

m 

Jfc=l 

(11) 

holds for any sets (o\9,x) and {k?,r\pX ) 
corresponding to each other through the constitutive 
equations (7a,b), as well as for any plastically 
admissible set (5,9.x)»>e. such that /(CT,9,X)^0. 

On letting the ys vary in all possible ways, P describes 
n entirely, also taking the ys as functions of / > 0, but 
complying with (11) for all t, a load path P(/) inside 
n is obtained (Admissible Load History,  ALH). 
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Equation (10) implies that the thermo-elastic stress 
response and the temperature corresponding to P = 
(P1,, P^ell can be represented as 

Assuming a linear elastic material behaviour, it is 

°* = 2>fc°f00 
*=1 

k=l 

(12a) 

(12b) 

where af(x) and Qk(x) denote the analogous fields 

corresponding to basic load P*, V* e I(m). 

In the following the static and kinematic theorems 
are phrased in a time-discrete form, in which only the 
basic thermo-mechanical loads are considered. This is 
possible due to the convexity of/ 

4.1 STATIC SHAKEDOWN THEOREM 

A necessary and sufficient condition in order that 
(elastic) shakedown occurs in an elastic-thermo- 
plastic structure subjected to thermo-mechanical loads 
variable in a (convex) polyedral domain n with basic 
loads Tk,kel(m), is that there exist a time 
independent stress field, "5, and a time-independent 
static internal variable field, %, such that the sets 

(afc=<jf(x)+ö, 6fc,x) he plastically admissible 
for all k e I(m) everywhere in V, i.e. 

f(6kßk,Xk) ^0.       in P, all * e I(m).      (13) 

Proof. The procedure is similar to that of classic 
shakedown theory. The necessity part of the theorem 
is skipped being self-evident and we consider the 
sufficiency part only. Assume that eqn (13) be 
satisfied with some ö,and x-LetP = P(f), t>0, be 
any ALH and let the related elastic stress response 
and temperature distributions be expressed as in eqns 
(12a,b). Due to the convexity of/1 

f(aE +5,e,x)^Ytf(ok,Qk,xk)£0   inF 
k=l 

(14) 

Thus, denoting by o, s, TI ,.... the actual response to 
the considered ALH, by eqn (8) and setting 
a = <T£+öT,onehas 

J = (o-6).ep-(x-x)i>0,   iaV, VräO   (15) 

iP 
dV 

(16a) 

(x-x):S = ^{^(S)-vMS)-X:($-5)}; 06b) 

and thus, with an integration over V, eqn (15) gives 

-U [iM)^-*)        en) 
+v*(5)-v*,«)-»(5-l)]^ 

Since the first .integral on the r.h. side of (17) 
vanishes by the virtual work principle and since 
J ä 0 by eqn (15), follows 

+ V*,(S)-M'*,(I)-X:(5-l)]^^0 
(18) 

Considered that the above integral is positive definite 
and that therefore its value cannot become negative 
during the deformation process produced by the 
considered ALH, there must exist some time t such 
that for VtZt* it is J = Q, i.e. eqn (15) is satisfied 
as  an  equality,   and  as  consequence   zp,i[p,% 

vanishes at all t>t. That is, shakedown occurs. 
QED. 

Let Pfc denote some reference thermomechanical 

load with related temperature 6* and let cff be the 
corresponding elastic stress response. It can be easily 
shown that, if the sets ok = ß5 off + 0, $k = ß5 9^ 

satisfy eqn (13) with some ä, x, then ßäSß , 

ß being the relevant shakedown limit load. 

4.2 KINEMATIC SHAKEDOWN THEOREM 

A necessary and sufficient condition in order that 
elastic shakedown occurs in an elastic-thermoplastic 
structure subjected to thermo-mechanical loads 
variable within a convex polyedral domain II with 
basic loads P*, k e I(m) is that the inequality 
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4M.«*]-Z I H8M-**) (19) 

rfF2>0 

is satisfied for arbitrary choices of (noninstantaneous) 

mechanismse^ = sp(u),   with   u = 0onSa c dV, 

and of thermoplastic strain path s%,r\%,£,k such that 

I«*««'. En?-*'. Z^=o, inV. 
k=l fc=l i=l 

(19) 

The proof, similar to that presented in [12,13], is 
not reported here for lack of space. It can be shown 

that   eqn.    (19)   written   for    of = ß* of,and 

6*=ß*6i gives: 

(21) ß*£_fc=i  

jfc=i 

which is an upper bound to ß . 

5. Conclusions 

This paper provide an improved formulation of 
shakedown theory for thermo-mechanical processes 
with temperature-dependent yield stress. Thermal 
coupling and creep phenomena have been ignored, 
but they perhaps need to be considered in a refined 
theory, which is the object of an ongoing research 
work. 
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The main objective of this paper is to give a description of the recent developments approach 
to the analysis of the Transformation Induced Plasticity (TIP) phenomenon. Both experimental and 
modelling aspects are reviewed. For the experimental one, the main parameters associated with TIP 
evolution are collected from a literature citations. A number of phenomenological and theoretical 
models are then considered in order to see if the chosen experimentally observed phenomena are well 
described. This work shows that these phenomena are not yet completely taken into account by the 
tested models. The phenomenological model presented by Videau et al. seems to be the one which is 
able to take into account the largest number of the observed effects. Unfortunately, this fact remains 
today mainly qualitative because up to now (to the best of our knowledge) no complete experimental 
identification of the model parameters has so far been made. 

Key Words: Fe-C Alloys, Phase Transformation, Transformation Plasticity, Residual Stresses. 

1. Introduction 

Welding process of Fe-C alloys usually leads 
to the creation of a particular region called Heat 
Affected Zone (HAZ). The HAZ is the part of the 
material where the temperature remains below the 
melting point but sufficient to enable some structural 
transformations. If these transformations occur 
without external applied stress, normally no change of 
geometry is observed (except for the cases where the 
Fe-C alloy includes some segregations responsible of 
an effect of anisotropy which will have some 
macroscopic consequences). Otherwise, if the 
transformation occurs under an external applied stress, 
an irreversible deformation is observed even if the 
applied stress is significantly less man the yield stress 
of the weaker phase. This kind of irreversible 
deformation is called Transformation Induced 
Plasticity (TIP). The geometrical variation induced by 
this phenomenon has a significant part in the creation 
of the residual stresses in the material. It is therefore 
necessary to know accurately the importance of the 
latter after a welding process. The main goal of this 
paper is to give a description of the recent 
developments approach to the analysis of the TIP 
phenomenon. For this objective both experimental and 
modelling aspects are reviewed. In the second part of 
this paper some experimentally observed phenomena 
related to the TIP evolution are briefly described. The 
third part is devoted to a short presentation of the 
main constitutive equations of the chosen models 
followed by some comments related to the ability of 
these models to describe the considered phenomena. 

2. Experimentally observed phenomena 

The main experimentally observed phenomena 
collected from the literature citations are related to the 
TIP evolution versus the applied loading 
characteristics and the strain hardening state of the 
coexisting phases. These phenomena may be 
classified as follows: 

(a) Level of the applied stress influence : the 
influence of the level of the applied stress on the final 
value (at the end of the transformation) of TIP has 
been studied by many authors [l]-[3]. The different 
obtained results seem agree with the fact that the final 
value of TIP is proportional to the applied stress 
(which remains constant) up to a certain fraction of 
the yield stress. According to [3], this fraction is about 
1/2 for an applied tension or a combination of a 
tension and torsion and about 2/3 for an applied 
compression or a combination of a compression and a 
torsion. 

£   2 
C « 
5 1.5 
o 
to 

I   ' c 
•I 0.5 

T- 
4 tension 
x tension-torsion 
0 torsion 
♦ compression-torsion 
o compression .--.-.:*r 

aRsst*"-** 
-ä"--*  +— 

60 80 100 120 
Equivalent stress (MPa) 

Figure 1 : TIP under various stress state [3] 

(b) Direction of the applied stress effect : TIP 
evolution depend on the direction of the applied 
stress. At the end of a transformation, it seems that the 
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TIP absolute value is maximum for the tension and 
minimum for the compression [3] (see figure 1). 

(c) Interaction between classical plasticity and TIP : 
liiere exists an interaction between the classical 
plasticity and TIP. In fact, it was shown [3] that the 
HP evolution depends on the hardening state of the 
mother phase. 

(d) Direction of TIP flow : some experimental results 
given in [3] show that TIP increment is colinear to the 
deviator of the effective stress instead of the stress 
itself. The effective stress is equal to the difference 
between the applied stress and the internal one. It was 
established that the latter has two components related 
respectively to the classical plasticity and TIP. 

3. Considered Models. Comments 

TIP is the plastic flow observed during the 
progress of a phase transformation under a moderate 
(less than the yield stress of the weaker phase) applied 
stress. This phenomenon is generally explained by 
two physical mechanisms : the first one [1] attributes 
TCP to the microscopic plasticity generated in the 
weaker phase (oriented by the applied stress) by the 
difference of specific volumes between the coexisting 
phases. This mechanism is related essentially to 
diffusional transformations (including bainitic one). 
The second mechanism [9] is related to martensitic 
transformation, it attributes the TIP phenomenon to 
the fact that under an external loading, the martensite 
plates are formed with a preferred orientation. In this 
paper only models based on the first mechanism will 
be considered. 

For each considered model, the main 
constitutive equations are briefly presented followed 
by some comments related to their ability to describe 
the experimentally observed phenomena presented in 
the second part of this paper. 

3.1 THEORETICAL MODELS 
3.1.1 The Model Proposed by Greenwood and 
Johnson. This model doesn't give the evolution of TE? 
during transformation, it only allows to have the final 
value of TIP (at the end of a transformation) by the 
following equation: 

»p' _ 
5c AV 
6(3    V 

(i) 

where: 

d" is Transformation Induced Plasticity (TIP), 
a is the applied stress, 
ay is the yield stress of the weaker phase, 
AV/V is the relative variation of volume during 
transformation, 

Comments: 
- phenomenon (a) : not completely taken into account 
because the model supposes a full proportionality 
between the final value of TIP and the applied stress. 
-phenomenon (b) : not taken into account because for 
the same absolute value of the applied stress, whatever 
its direction, the model forecasts the same TIP value. 
-phenomenon (c) : not taken into account because no 
interaction between TIP and classical plasticity is 
considered. 
-phenomenon (d) : not taken into account because the 
TIP flow is assumed to be colinear to the stress itself 
instead of the deviator of the effective stress. 

3.1.2 The Model Proposed by Abrassart. This model 
gives the TIP evolution during the transformation. The 
proposed expression is as follows : 

£"' = 
3 a AV      2 i 
 (z—z2) 
4oVK     3 

(2) 

where: 

€' is the transformation induced plasticity, 
a is the applied stress, 
<sy is the yield stress of the weaker phase, 
APTFis the relative variation of the volume during the 
transformation, 
z is the proportion of the new phase (Q<z<l). 

Comments : the same qualitative comments that the 
previous model could be made for mis one. 
Quantitatively, at the end of the transformation (z=l), 
this model predicts a value less than the third of the 
one given by the Greenwood and Johnson model. 

3.1.3 The Model Proposed by Leblond. This model is 
more recent, it gives the TE? evolution during the 
transformation. The proposed expressions considering 
ideal-plastic phases are as follows : 

ro ifz<0.03 
3Ae" a" 

1-"-.S.h(—).(Lnz).z  ifz>0.03 
CT, G 

where: 

/<-) = V 
1 if— <05 

a' 
1+3.5(^-1)      '7^05 

(3) 

(4) 

A£ J^J  is the difference of thermal deformation 

between   the   mother   and   the   daughter   phases 
(=AV/3V). 

a/is the yield stress of the weaker phase, 
S is the deviator of the stress tensor, 
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.eg . 
G    is the equivalent applied stress (Von Mises), 

G   is the yield stress of the mixture, 
cr" M \ is a function which takes into account the 
V 

influence of the ratio : equivalent applied stress over 
the yield stress of the mixture, 
Z is the proportion of the new phase. 

For the case where a linear isotropic hardening 
is considered, <7/v will depend on the effective plastic 
strain. If a linear kinematic hardening is considered, S 
will be replaced by (S-A) where A, is the internal 
stress due to the TIP evolution [7]. 

Comments: 
-phenomenon (a) : qualitatively taken into account by 
the function ,/?",. 

c 
-phenomenon (b) : not taken into account because the 
equivalent applied stress is given by the isotropic 
criterion of Von Mises. 
- phenomenon (c) : not taken into account because no 
interaction between TIP and classical plasticity is 
considered. The internal stress tensor A, induced for 
the kinematic hardening case is only due to the TIP 
evolution. 
-phenomenon (d) : taken into account when kinematic 
strain hardening is considered. In fact in the latter 
case, the direction of TIP flow is assumed to be the 
one of the deviator of the effective stress. 

3.2 PHENOMENOLOGICAL MODELS 
3.2.1 The Model Proposed by Desalos. Considering 
the results of some TIP experiments, Desalos [2] has 
established a relation between the TIP evolution, the 
proportion of the new phase and the uniaxial applied 
stress, the proposed expression is as follows: 

S"=K.O.f(z) (5) 
where: 
K is a parameter depending on the transformation and 
on the material, 
f(z) is a function of the proportion of the new phase, 
for the considered test this function is equal to (2-z)z 
(f(0)=0andf(l)=l). 

A generalization of the above equation for the 
multiaxial cases in addition to the ones where the 
stress is not constant was later proposed by Leblond 
[8]: 

tf=k.Sv.g(z).Z (6) 
where: 
Z is the rate of the new phase, 
g? is the ij component of the TIP rate tensor (g **), 

S is the ij component of the deviator tensor (S), 
•i — 

g(z) is a function of the new phase proportion (    & ). 8=1 
Comments: 
-phenomenon (a) : not completely taken into account 
because the model supposes a full proportionality 
between the final value of TIP and the deviator of the 
applied stress. 
- phenomenon (b) : not described because the 
equivalent applied stress is given by the isotropic 
criterion of Von Mises. 
-phenomenon (c) : not taken into account because no 
interaction between TIP and classical plasticity is 
considered. In addition no internal stress whatever its 
origin is considered. 
- phenomenon (d) : not considered because the 
direction of TIP flow is assumed to be the one of the 
stress deviator. 

3.2.2 The Model Proposed by Videau & al.. This 
model is the more recent of all. The evolution of the 
TIP rate is given by: 

(7) r=[iK^iis-r) 
For diffusional transformations, the above equation is 
slightly modified as follows : 

r=(s^))£-^'') (8) 

where: 
{X) = XsiX>0   et   {X) = 0siX<0 
i and j mean: transformation, phase i -» phase j, 
Zj is the proportion of phase i, 
S is the stress deviator tensor, 
Jf' is the internal stress tensor, it includes the effect of 
the interaction between TIP and classical plasticity, 
the sum ^K..z.(z.) = K" rePlaces 2k(l-z)z 

•j 

in the equation (6). In the presence of only two 
phases, K"=Kazl(z2} + K3lZ2(zl).Tbas K» 

allows to take into account the direction of the 
transformation (i->j or j-»i) because it is 
experimentally observed that K12 is different of K,,. 

Comments: 
-phenomenon (a) : not completely taken into account 
because   the   value   of  TIP   at   the   end   of  a 
transformation is assumed to be fully proportional to 
the effective applied stress. 
- phenomenon   (b)   :  not  described  because  the 
equivalent applied effective stress is given by the 
isotropic criterion of Von Mises. 
-phenomenon (c) : qualitatively expressed because the 
considered internal stress tensor X? should include a 
classical plasticity effect. 
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-phenomenon (d) : expressed because the direction of 
TIP flow is assumed to be the one of the effective 
stress deviator. 

4. Conclusion 

new phase. That definition seems not sufficient when 
more than one phase transformation occur. In our 
opinion the forecasts will be better if z is taken as the 
sum of the proportions of the new phases which are 
formed under the external applied load. 

Table 1 summarizes the conclusions 
concerning the ability of the considered models to 
take into account the selected experimentally observed 
phenomena. The first column contains the selected 
models and the first line refers to the considered 
phenomena, y and n mean respectively that the model 
take into account or not the chosen phenomenon. 
When both y and n are present the considered model 
take partly into account die chosen phenomenon. 

Table 1 ability of considered models to describe 
experimentally observed phenomena (a), (b), (c) and 
(d). 

(a) W (') <<*> 
Greenwood & Johnson y<n n n n 

Abrassart y,n n n n 
Leblond y n n y 
Desalos y,n n n n 

Videau et al. JUL n  y,, y 

This table shows that the chosen experimentally 
observed phenomena are not yet completely taken into 
account by the tested models. The phenomenological 
model presented by Videau et al. seems to be the one 
which is able to take into account the largest number 
of the observed effects. Unfortunately, that remains 
today mainly qualitative because to the best of our 
knowledge no complete experimental identification of 
the model parameters has so far been made. Moreover 
in a welding process thermal gradients create some 
opposite thermal stresses for which the TIP evolution 
is not necessary the same (phenomenon (b)), this fact 
is not taken into account by this model and then the 
forecasts could be different from the reality. 
The models proposed by Greenwood and Johnson and 
Abrassart cannot be used to predict the consequences 
of a welding process because, the first one only gives 
the value of TIP at the end of a phase transformation 
under a constant loading and the second one largely 
underestimates the IIP evolution. 
The model proposed by Leblond is more general, it is 
normally applicable to predict TIP in a welding 
process. Quantitatively the forecasts could be different 
from the reality if (b) and (c) phenomena are 
significant. This model being essentially theoretical, 
more experimental results are necessary to its 
validation. 
The tested models, except the one proposed by Videau 
et al., are established taking into account only one 
transformation, the variable z present in the proposed 
expressions is then defined as the proportion of the 
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Temperature Field and Welding Residual Stresses in an 
Underwater Plasma-MIG Welded Single-Butt Weld 

L. Lindhorst and O. Mahrenholtz 

Offshore Section II, TU Hamburg-Harburg, D-21071 Hamburg, GERMANY 

The influence of the water contact on underwater Plasma-MIG welding is regarded. An exam- 
ple of a rectangular plate with a single-butt weld is presented. The transient temperature field and 
the welding residual stresses are calculated using the finite element method (FEM). The results of 
the wet underwater welding process are compared to those of the dry welding process. 

Key Words: Underwater Welding, Finite Element Method, Welding Residual Stresses 

1. Introduction 

Underwater welding is an important part of 
building and maintaining ships, oil rigs, and other 
off-shore equipment. Scuba divers with this skill 
have used arc welders to repair metal failures in 
all types of situations. Industry is still finding dif- 
ferent areas where underwater welding is needed. 
Nuclear power has been identified as one of these 
areas. The pools of water which house spent ura- 
nium rods need constant maintenance to meet the 
rigorous standards of the industry. Automation is 
required to carry out repairs in such pools and the 
quality of the welds must be high. 

Welding under water causes the material in 
the weld and in the region surrounding the weld 
to cool very rapidly. The quality of a weld is made 
up of several factors. Two such factors are the mi- 
crostructure and the residual stresses in the welded 
structure. Both of these factors are affected adver- 
sely by a high cooling rate, which is not suited to 
applications requiring ductility. Fast cooling causes 
the metal to contract quickly. This often leads to 
regions of high stress in the weld. Cracking can be 
seen in these welds. As a result, the fracture me- 
chanics of underwater welds are an area of concern 
(Lindhorst & Mahrenholtz [1]). 

2. Theory 

2.1 PLASMA-MIG WELDING 
There are two components that make up the 

simulated welding process. These two components 
axe the Plasma arc and the MIG arc as shown in 
Fig. 1 (Hamann [2]). Both belong to the 'Direct 
Light' processes. The Plasma-MIG technique works 
using a mechanically fed fusible metal electrode. 
The heat is created by the discharge of electrical 
energy when the positive and negative electrodes 
come in contact with each other. The positive elec- 
trode is the weld wire, which is fed at constant velo- 

city to the welding head as the weld progresses. 
The ground, or negative electrode, is the weld spe- 
cimen. The heat released from both the Plasma arc 
and the MIG arc melt the weld wire as well as 
the base metal. The MIG arc is surrounded by a 
region of hot inert gases. These gases protect the 

•—Plasma gas 

■a ^ Shielding gas m -i 
/    0/ MIG wire 

Plasma arc 

Glass fibre 
gasket 

weld from the atmosphere, in water and in the air. 
There is heat transfer to these gases, which is heat 
loss. This is accounted for by the efficiency of the 
welder. The efficiency of the welder is improved by 
trapping inert gases between the MIG arc and the 
Plasma arc. The Plasma gas is ionized which impro- 
ves conductivity between the two electrodes. This 
stablizes the Plasma arc, which in turn creates a 
weld that transfers material to the weld specimen 
without splattering. A schematic of the process is 
shown in Figure 1. 

The Plasma-MIG welder simulation that is 
used in this simulation was developed by Ha- 
mann [2]. The heat flux by the arcs is approximated 
by a hemispherical (MIG arc) and a two-dimensio- 
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nal (Plasma arc) power distribution. The two pro- 
cesses are mathematically simulated by superim- 
posing the power density function of the MIG arc 
with the power density function of the Plasma arc. 
This generates a three-dimensional power density 
distribution for the combined arcs. 

2.2 HEAT TRANSFER TO WATER 
The water contact influences mainly the tem- 

perature distribution inside the welded body in 
case of wet underwater welding. Hamann & Mah- 
renholtz [3] have investigated the influence of 
the water contact on the temperature field. They 
have developed a model for the calculation of the 
surface-heat-transfer coefficient, which takes into 
account the material effects, the orientation of the 
surface and the influence of undercooled boiling. 
The march of the surface-heat-transfer coefficient 
for the top and the bottom side of a horizontally 
orientated plate is shown in Fig. 2 (Hamann [2]). 
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Fig.2. Heat transfer coefficient. 

2.3 TEMPERATURE CALCULATION 
The calculation of the instationary tempera- 

ture field is separated into the problems of heat 
conduction, heat transfer to environment and si- 
mulation of welding process. The heat conduction 
problem is solved numerically because of the non- 
linear, temperature-dependent material properties. 
The internal energy accumulated by the deforma- 
tion of the body is negligibly small (Banas et al. [4]) 
for the heat conduction problem of a conventional 
arc welding process. The balance of the internal 
energy for such a process is described by the Fou- 
rier heat conduction equation. The time integration 
is performed by using the unconditionally stable 
Dupont H scheme (Hogge [5]). 

2.4 RESIDUAL STRESS CALCULATION 
The welding residual stresses are caused by 

two physical mechanisms: the inhomogeneous vo- 
lume change and the phase transformation. The 
first one arises from local heating and cooling, 
which leads to elastic-viscoplastic deformations. 

The second leads to local volume changes and 
transformation stresses. Both types of stresses are 
equivalent from the mechanical point of view (Wu 
& Carlsson [6]). 
The thermal loads due to heat input by the mo- 
ving arcs are gradually applied in the FE analysis 
in order to determine the elastic or plastic strains. 
The total strain increment is given by the sum of 
the elastic, the plastic, the creep, the thermal and 
the strain increment due to phase transformation. 

The creep strain increment is not considered 
due to the high cooling rate in case of wet underwa- 
ter welding. The calculation of the strain increment 
due to phase transformation demands a coupled 
thermo-mechanical-metallurgical model of welding. 
It is very important to consider the temperature 
dependent material properties as correctly as pos- 
sible working with such a model. So far, there is 
insufficient information on the temperature depen- 
dent material properties of low carbon steels in the 
temperature range above 1000 °C. For this reason, 
the strain increment due to phase transformation is 
not calculated but the effects of the transformation 
induced plasticity and the transformation induced 
volume change are considered in a simplified way. 
The transformation plasticity is approximated by 
elastic/ideal-plastic material behaviour between 
300 °C and 400 °C as stated by Argyris & Mlej- 
nek [7] and Goldak [8]. The transformation volume 
change is approximated by an artificial reduction of 
the thermal expansion coefficient in the transition 
temperature range (Goldak [8]). 

3. Weld specimen 

The geometry of the specimen is idealized to 
show a section of a V-joint weld 100 mm in length 
(Fig. 3). Since the V-joint is symmetrical, only half 

Fig.3. Geometry of the weld specimen. 

of the weld is FE modeled (Fig. 4), saving processor 
time and making the simulation faster. The speci- 
men is 150 mm in width and 20 mm thick. The weld 
is rounded at the top and the bottom. The top of 
the rounded weld reaches 3.5 mm above the top sur- 
face of the plate. The bottom of the weld reaches 
1 mm below the bottom surface of the plate. The 
two parts to be welded do not touch. The distance 
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between the plates at the top surface is 20 mm 
while at the bottom surface is 5 mm. This forms 
the V for the weld metal to fill. 

The specimen is oriented horizontally in the 
water with negligible pressure effects. The top of 
the plate lies parallel with the surface of the water. 
The specimen is divided into 2550 elements with 
3276 nodes. The element type used is classified as 
an 8 node brick element (Fig. 4). The welding pro- 

dry weld 

Fig.5. Temperature field (time t=32 s). 

Fig.4. FE-discretization of the weld specimen. 

cess of laying molten metal onto a plate is simula- 
ted with a feature of the FE program ANSYS called 
'birth and death'. The elements of the filler mate- 
rial have already been defined and created as a part 
of the geometry of the specimen, but to start the 
simulation, all these elements axe defined as having 
a stiffness of 10-7. The elements are brought to life 
according to the position of the welding torch by 
giving them their proper value of stiffness. 

The material used in this simulation is the 
StE 355 off-shore steel. The temperature depen- 
dent material properties of this steel are taken from 
Lindhorst et al. [9]. 

4. Results 

4.1 TEMPERATURE FIELD 
Fig. 5 shows the temperature field at the time 

of 32 s after the beginning of the welding process. A 
comparison of the temperature field for the dry and 
the wet weld is presented. One half of each plate is 
shown in order to compare the temperature field 
inside the plates. 

Fig. 5 reveals a perceptible difference between 
the temperature fields of both processes. Although 
the maximum temperature in the molten pool is 
about 1700 °C for the two plates, the molten pool 
in case of dry welding is about 20 % longer than 
in case of wet welding. The dimension of the heat 
affected zone is also bigger for the dry weld than 
that of the wet weld. 

The temperature gradient in the vicinity of 
the weld seam is about 170 °C/mm for the wet weld 
and about 140 "C/rnm for the dry weld, which is 
a difference of approximately 18 % between both 
conditions. 

4.2 WELDING RESIDUAL STRESSES 
The water contact in case of wet underwater 

welding leads to a high cooling rate compared to 
that of the dry weld. The effect of the different coo- 
ling conditions of both plates is an perceptible in- 
fluence on the welding residual stress distribution. 
Fig. 6 shows the welding residual stress component 
ax after cooling of the plates is finished. This stress 
component is chosen for presentation here, because 
it is of importance for cracks perpendicular to the 
welding direction. The direction of ax is the same 
as the opening direction of such cracks. That can 
lead to a propensity to crack propagation due to 
tensile stresses in x-direction. 

The maximum <rx value of the wet weld is 
about 350 MPa, which reaches nearly the yield 
stress of the base material. Compared to this, 
the maximum ax value of the dry weld is about 
100 MPa smaller, which is a difference of approxi- 
mately 30%. There is a perceptible stress gradient 
over the thickness (y-direction) of the plates, where 
ax reaches negative values on the plate surfaces and 
positive values inside the plates. 

It is obvious that the stress distribution inside 
the dry weld and on its surface is nearly symmetric. 
In case of wet welding, the cooling rate of the plate 
is so high that the temperature field can not be 
equalized by heat conduction. Here, the distribu- 
tion of the stress component ax is not symmetric. 

In summary, one can say that the influence of 
the water contact in case of wet underwater wel- 
ding leads to a deteriorated welding residual stress 
state compared to that of the dry weld for the re- 
garded problem. The differences in the distribution 
of the presented stress component ax of the dry and 
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dry weld 

Fig.6. Stress component ax after cooling. 

the wet weld axe caused by the different boundary 
conditions. On the one hand there is water contact 
for the wet weld and on the other hand there is 
cooling in air atmosphere for the dry weld. This 
difference is the only difference between the input 
data of both calculations. 

5. Conclusions 

The influence of the water contact on the wel- 
ding residual stresses in a wet underwater Plasma- 
MIG weld is shown in this paper. The instationary 
temperature field and the welding residual stresses 
are mainly influenced by the water contact. The 
results presented here show the importance of wel- 
ding residual stresses in the defect assessment of 
wet underwater welded structures. The welding re- 
sidual stresses of the wet weld are about 30 % big- 
ger than that of the dry weld. They can contribute 
to satisfy the fracture criterion. They are of great 
concern in wet underwater welding and especially 
for materials with low fracture toughness. There- 
fore, further investigations on the influence of the 
water contact on welding residual stresses axe ne- 
cessary. 
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Influence of Low Tensile Residual Stresses due to Welding on 
the Fatigue Strength of High Strength Steels 

Th.Nitschke-PageI*,H.Wohlfahrt*, 

* Welding Institute, University of Braunschweig, Germany 

Although in literature much discussion is found on the influence of residual stresses on the fatigue behaviour 
of welded structures, additional quantitative results are of importance. The paper reports on detailed 
quantitative investigations of the influence of tensile residual stresses on the fatigue strengm of welded joints 
of fine-grained high strength structural steel StE 890. An important results is that in high strength structural 
steels tensile residual stresses with only medium magnitudes can be found at the weld toe. Nevertheless a 
remarkable influence of these residual stresses on the fatigue strength could be detected. 

1. Introduction 

The influence of residual stresses on the fatigue strength 
is well known for different base materials [14] and 
especially in high strength steels, the fatigue strength can 
be related to the magnitude of tensile residual stresses in 
the surface layers [8,16,17]. Tensile residual stresses are 
also frequently used to explain the low fatigue strength 
of weldments. Usually it is assumed that the tensile 
residual stresses in weldments always reach the yield 
strength of the base material [1,3,44.6]. However, 
investigations [10-13] have indicated that in weldments 
of high strengm structural steels under normal welding 
conditions, the tensile residual stresses at the weld toe 
reach a magnitude significantly below the yield strength 
of the base material. On the other hand, in low strength 
steels the tensile residual stresses related to the yield 
strength may be higher, but the effectiveness of these 
residual stresses will exactly be lower or negligible. 
According to [8] the influence of tensile residual stresses 
in a base material can be approximated with 

Rw=Rw
5=o-m-0 RS (1) 

,.RS=0 where Rw is the fatigue strength and Rw is the 
fatigue strength of the stress relieved material. The 
residual stress sensitivity factor m considers, that with 
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Fig. 1: Relation between the ultimate strength of different 
steels and the efficiency of mean stress (m*) and residual 
stresses(m) /15/. 

decreasing yield strength the influence of the residual 
stresses on the fatigue strength decreases more and more 
as a consequence of their reduction due to plastic 
deformations during the first load cycles [8,15]. Fig. 1, 
which shows the relationship between m and the ultimate 
strength of different steels [15] under consideration of 
the range of the ultimate strength for steels commonly 
used for welded components, evaluates, that the 
influence of the residual stresses on the fatigue strength 
of welded joints cannot be estimated without knowledge 
about the total amount of residual stresses and their 
efficiency at the weld toe. 

In the model developed by Gurney [4] tensile residual 
stresses as high as the yield strength are anticipated. 
Superimposing the residual stresses and the load stresses 
during fatigue loading it is assumed, that the residual 
stresses will be reduced during the first load cycle. Then 
the sum of the load stress and the residual stresses will 
always reach the yield strength after the first load cycle 
and, therefore, the fatigue strength will not depend on 
the magnitude of an additionally applied mean stress 
because the upper stress will always be as high as the 
yield strength [4,6,9]. However, in high strength steels 
the magnitude of the tensile residual stresses due to 
welding depends on the combined effect of hindered 
shrinkage and pase transformation during cooling down 
[10-13]. If the phase transformation starts in the upper 
bainite or in the ferritic-perlitic state, the distribution of 
the residual stresses and the magnitude of the tensile 
residual stresses depends primarily on the degree of 
restraint of the weld seam. In the case of a high cooling 
velocity the transformation starts at a lower temperature 
and the distribution of the residual stresses will be 
strongly influenced by the compressive stresses 
occurung due to the hindered volume expansion in the 
transforming zones. Fig. 2 shows schematically possible 
distributions of the transverse residuals stresses as a 
consequence of different cooling conditions obtained 
using various heat inputs. The tensile residual stresses 
become higher with increasing heat input while the weld 
seam and the heat affected zone are broadened. 
However, the residual stresses at the weld toes are 
expected to only reach a magnitude of approximately 1/3 
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Fig. 2: Influence of the Heat input on the width of the weld 
seam, hardness, residual stresses an their efficiency for the 
fatigue strength. Tt=transformation temperature, 
vt=cooling velocity 

of the residual stresses in the weld centre line [7,18]. 
Otherwise, the hardness at the weld toe decreases with 
an increasing heat input, resulting in a lowering of the 
efficiency m of the higher tensile residual stresses. 
Consequently the residual stresses are not suitable to be 
used as an indicator for the expected fatigue strength if 
their efficiency at the weld toe is not taken into account 

2. Aim of the investigation and 
experimental procedures 

Investigations on butt welded joints of various high 
strength structural steels (Rm=525...1040 MPa) were 
conducted with the aim to show a quantitative 
relationship between the magnitude of the multiaxial 
state of the welding residual stresses and the fatigue 
strength. To examine, whether the m-f actors of different 
base materials may be also used for welded joints, it was 
necessary to investigate the reduction of the residual 
stresses under an alternating load. The multiaxial 
residual stresses were determined in order to calculate 
the main residual stresses and their reduction after 
different numbers of load cycles. 

Here results of investigations with a quenched and 
tempered structural steel StE 890 (Rm=1040 MPa, 
Re=1005 MPa) with a six-layer double-V weld seam 
(plate thickness 10 mm) are presented. The specimens 
were TIG-welded with pulsed current using the 
parameters given in Tab. 1. The supply of the filler 
material was carefully controlled with the aim to create 
a reproducible flat weld seam with minimized notch 
geometry. The generation of various states of tensile 
residual stresses was obtained by using different levels 
of heat input during the welding of the cover-passes or 
by stress relief annealing of specimens welded under 
high heat input. After welding the cross section 
including the transverse butt weld of the specimens was 
reduced to a width of 50 mm by milling. The residual 
stresses were measured both after welding and after 

milling and it could shown, that in the completely 
prepared specimens they were nearly as high as after the 
welding process. The notch factors otk were determined 
using the formula given in[ 19] after measuring the heigth 
and width of the weld seam, the reinforcement angle and 
the radius of the macro notches at the weld toe. The 
angular distortion was always lower than 0.5°. 
Table 1: Welding parameters (shielding gas 99.9% Ar) 

1+2 3+4 5+6 5+6 

Voltage (V) 9.0 9.0 10.0 13.0 

Base current (A) 110 110 100 230 

Pulsed current (A) 180 190 210 300 

Frequency(Hz) 8.40 8.40 8.55 8.62 

Welding speed (cm/min) 10 10 10 10 

Filler supply (cm/min) 30...40 30...40 40...60 40...60 

Heat input (kj/cm) 7.83 8.10 9.3 19.89 

The distributions of the transverse and longitudinal 
residual stresses of each series of specimens were 
measured by means of X-rays (CrKa-radiation) before 
cyclic loading to prove the reproducibility of the induced 
residual stresses. Furthermore, the transverse and 
longitudinal stresses in the weld seam and at the weld 
toe were measured on at least 30 specimens of each 
series. The main residual stresses in the weld seam and 
at the weld toe were determined using three residual 
stress components. The measurements of the residual 
stresses were repeated in each of the experiments with 
different stress amplitudes after every decade of load 
cycles to examine the alteration of the multiaxial residual 
stresses during fatigue loading. Fatigue tests under 
tension-compression loading (K=-1) were conducted for 
different stress amplitudes and six specimens on each 
stress amplitude. The S-N-curves for the 5%, 50% and 
95%-fracture-probabilities were calculated by the 
arcsin A/P -transformation. 

3. Experimental results 

3.1 RESIDUAL STRESS DISTRIBUTIONS 

The scatterbands of the transverse residual stresses are 
given in Fig. 3. The figures show that in the specimens 
welded under a high heat input the greatest tensile 
residual stresses in the weld seam are higher than in the 
specimens welded under a low heat input. At the weld 
toe, however, the magnitude of the tensile residual 
stresses is nearly the same in both series. The high 
strength steel StE 890 was also investigated in the stress 
relief annealed state and an additional series of 
specimens welded under a high heat input was preloaded 
in tension-compression for ten cycles with a stress 
amplitude of 600 MPa, which was nearly as high as the 
cyclic yield strength of the base material. The 
comparison between the transverse residual stresses of 
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Table 2: Mean values of the residual stresses in MPa, 
notch factor, Vickers hardness, m-factors and product of 
m and V'Mises stresses at the weld toe 

W=9.30 
kJ/cm 

W=19.89 
kJ/cm 

stress 
relieved 

preloaded 

of 270 ±67 2S4±73 96±64 60±35 

^p 176 ±60 190±56 53 ±70 70 ±38 

HV5 420 340 325 340 

Ok 1.05 1.05 1.05 1.05 

m^5 78 54 16 17 

the stress relieved specimens and the preloaded 
specimens in Fig.4 illustrates that the residual stresses at 
the weld toe could be reduced through preloading to the 
same level as obtained through stress relieving. Tab. 2 
contains the mean values of the residual stressesand the 
hardness of each series measured at the weld toe, the 
estimated factors m and the product of m and Ov . If the 
product of m and GyS is used to characterize the 
influence of the residual stresses on the fatigue strength, 
it can be expected that the specimens welded under the 
low heat input should show the lowest fatigue strength 
and the stress relief treatment should further the increase 
of the fatigue strength as much as preloading. 

32 RESULTS OF THE FATIGUE TESTS 

The assumptions that were made are confirmed by the 
results of the fatigue tests. The comparison of the 

S-N-curves determined for the various specimens 
(Fig.5) indicates, that the difference in the fatigue 
strength of the specimens tested in the as welded state 
has the same order of magnitude as the difference of the 
product of m and G^ and the fatigue strength of the 
specimens welded under high heat input is higher, as it 
should be expected under consideration of the values in 
Tab. 3. On the other hand, the increase in the fatigue 
strength due to stress relieving or preloading is 
approximately as high as the decrease of the product of 
m and a? . 

10 
Load cycles 

Fig.5: S-N-Curves of push-pull-loaded TIG-welded 
joints of Steel StE 890 

3.2 RESIDUAL STRESS ALTERATION 

Fig. 5 illustrates the V'Mises-stress distribution before 
fatigue loading and after the first load cycle with a stress 
amplitude of 300 MPa in a specimen welded under a high 
heat input. The distribution of the V'Mises stresses 
before fatigue loading shows that relatively high values 
of approximately 720 MPa are reached only in the weld 
seam. At the weld toe, the magnitude of the V'Mises 
stresses reaches only 500 MPa, about 50% of the yield 
strength of the base material. However, during the first 
load cycle the V'Mises stresses show an alteration in that 
way that the distribution becomes more homogeneous. 
The V'Mises stress at the weld toe is reduced from 500 
MPa to 305 MPa. During fatigue loading, the V'Mises 
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Stresses at the weld toe are reduced under all of the stress 
amplitudes (Fig. 5), although they do not reach the 
magnitude of the cyclic yield strength or the yield 
strength. The magnitude of the reduction seems to 
depend on the magnitude of the stress amplitude. After 
Mr load cycles, the V'Mises stresses reach a magnitude 
of 250...300 MPa. This result is in accordance with the 
preceding statements in the influence of the residual 
stresses on the fatigue strength. 

5. Conclusions 

The results of this investigation have shown that the 
influence of tensile residual stresses due to welding on 
the fatigue strength can not be easily estimated such as 
through the comparison between the magnitudes of the 
tensile residual stresses of different weldments. 
Assumptions on the magnitude of the tensile residual 
stresses as presented in [4,5] are not confirmed by the 
results of the residual stress measurements made in this 
investigation. This is in agreement with results shown in 
[7,13]. At the weld toe, where the fatigue cracks start, 
the tensile residual stresses reach a magnitude 
significantly below the yield strength, especially in high 
strength steels as for instance StE 890. However, these 
relatively low tensile residual stresses can be important 
for the fatigue behaviour because their reduction during 
fatigue loading remains relatively small and thus they 
can become highly efficient due to the higher hardness 
or higher ultimate strength at the weld toe. A reliable 
estimation of the influence of these low tensile residual 
stresses on the fatigue strength requires the consideration 
of the efficiency factor m and possibly of the 
multiaxiality of stresses or, in other words, the 
consideration of both residual stress components at the 
weld toe. 

The concept of using efficiency factors m offered 
reasonable results in these investigations. But 
nevertheless one has to conclude that this concept has to 
be revised for welded joints as it would probably 
overestimate the influence of very high magnitudes of 
tensile residual stresses on the fatigue strength. The 
results of the investigations indicate also, that small 
reductions of the residual stresses, in connection with 
lowering the local hardness and therefore lowering the 
efficiency of the residual stresses as induced by a stress 
relief heat treatment, can cause a significant increase in 
the fatigue strength. 

Furthermore, the investigations on low strength steels 
show that differences in the fatigue strength can not be 
connected in any case with differences in the residual 
stress state. Even if the residual stresses are not 
considerably reduced during fatigue loading other 
influencing factors, as for instance the notch geometry, 
may have a dominating influence. One has to keep in 
mind that in weldments with sharp notches at the weld 
toe, such as after MAW- or MAG-welding, the fatigue 

strength depends primarily upon the notch geometry at 
the weld toe and hence a lowering of the residual stresses 
through stress relief treatments has no effect. 

The authors thank the german research association 
(DFG) for the support of the presented investigations. 
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Numerical Analysis of Process-Induced Thermal Residual Stresses 
in Metallic Matrix Composites 

A. Abedian, W. Szyszkowski, and S. Yannacopoulos 

Mechanical Eng. Dept., Univ. of Saskatchewan, 57 Campus Dr., Saskatoon, Sk. S7N 5A9, Canada 

Thermal stresses induced during cooling from the fabrication to ambient temperatures of SCS-6/Ti-6Al-4V and 
SCS-6/Ti-24Al-4Nb composites are analyzed applying the finite element method. The matrix is modeled as a 
bilinear elasto-plastic material with work and kinematic hardening. Thermo-mechanical properties of the fiber 
and the matrix are temperature dependent. It is shown that during cooling the material behavior is elasto-plastic 
at an intermediate stage only. At high temperatures, or when approaching room temperature, the stresses remain 
below the yield limit and the material is elastic. 

Keywords: FEM, composite material, thermal residual stress, plastic deformation, micromechanics. 

Introduction 
When cooling composites from their high processing to 
low operating temperatures residual thermal stresses are 
generated due to the mismatch in the coefficient of 
thermal expansion (CTE) of the fiber and matrix 
materials. Such stresses may cause some damage and 
affect the performance of composites. Several 
experimental methods have been used to measure these 
stresses. However, in general, the experiments [1-3] are 
difficult to carry out and interpret. Normally, some of 
the experimental techniques cause redistribution and 
relaxation of the stresses. A good example is the X-ray 
diffraction technique [2,3] which requires material 
removal. Consequently, the accuracy of the stress and 
strain components obtained by experimental methods is 
usually not very high. Therefore, to understand the 
features of the process-induced residual stresses, one has 
to rely on analytical and numerical methods. The Finite 
Element Method (FEM) is used in the present study to 
model the thermal stress phenomena during cooling of 
metallic matrix composites (MMC) and intermetallic 
matrix composites (IMC). 
The accuracy of the FEM simulation depends on the 
choice of numerical models which usually incorporate 
various geometrical and material assumptions. 
Typically, in such models the fibers are dispersed 
uniformly in the composite creating a pattern of 
identical volume cells. Consequently, only one 
representative cell, much smaller than the whole 
composite, is required to be modeled numerically. 
Clearly, the cell should be three dimensional. However, 
most of the FEM analyses of the residual thermal 
stresses in composite materials have been conducted 
using 2-D plane strain models [4-8]. 
It must be also mentioned that, in dealing with thermal 
stresses  the  material  model  should  be  capable  of 

handling the effects of temperature on the mechanical 
properties of the matrix and the fiber. If the processing 
temperature is relatively high, the process of cooling 
may induce inelastic ( that is plastic and creep ) 
deformation. Hence, such a material model should be 
capable of simulating elasto-plastic rate dependent 
behavior of the material over the temperature range 
considered. 
In the work presented here, a 3-D model of the 
hexagonal volume unit is analyzed. Particularly, this 
model considers the fiber end effects. The matrix is 
modeled by a bilinear elasto-plastic material model with 
isotropic and kinematic hardening. All the material 
properties are temperature dependent. It is shown that 
for SCS-6/Ti-6Al-4V (MMC) composite some plastic 
deformation develops in model away from the fiber end. 
This is contrary to the results obtained in [4-6] for the 
same composite using 2-D models. 

Material and Numerical Model 
For FEM modeling of composites, it is usually assumed 
that the fibers are dispersed in the matrix in a regular 
pattern. Considering the symmetric aspects of the fibers 
distribution in a composite leads to a representative 
volume or a unit cell. Regarding the symmetry surfaces 
of the unit cells, the associated prism model can be 
established. 
Here, the unit cell of a regular hexagonal pattern of long 
and straight fibers of circular section is modeled by a 
3-D prism as shown in Fig. 1. The FEM model is 
meshed with the 8-nodded and 20-nodded brick 
elements of ANSYS, a commercial FEM software. Since 
high stress gradients are expected in the region at the 
fiber/matrix interface, the 20-nodded elements are used 
to mesh the model there. Due to symmetry of the volume 
cell the following boundary condition regimes are 
adopted. The nodes on line 00' are restrained in the x 
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and y directions while the nodes on the OCB'B surface 
are restrained in the x-direction. The nodes on the 
OO'A'A surface are allowed to move in the OA- 
direction only and the AAB'B surface remains planar. 
Also, the surface AOB is assumed to be planar to 
represent a plane of symmetry in the middle of the fiber. 
The surface AOB' represents a free surface and is free 
to deform in any direction. 

Bottom 
Full Model y, 

Surface 

Fig. 1:FEM model. 

As has been shown numerically in [7,9] and 
experimentally in [10], the fiber end effects disappear at 
a distance of about 2.5 to 3 fiber diameters away from 
the free surface. Further away (from the free surface) the 
axial strain component (in the z-direction) remains 
constant and is practically independent of the fiber 
length. This state of generalized plane strain dominates 
in the rest of the model. Here, in order to secure that the 
numerical model is able to simulate the end effects and 
the stress state away from the fiber end. the length of the 
model is assumed to be about five fiber diameters. The 
volume dominated by the generalized plane strain state 
is called the inner zone and the volume close to the free 
surface is referred to as the end zone. In elastic analyses 
a stress singularity is generated at the free surface on the 
fiber/matrix interface by the discontinuity in the material 
properties and is difficult to handle numerically as 
reported in [9,11]. 
In the present study, the thermal stresses in SCS-6/Ti- 
6A1-4V (MMC) and SCS-67Ti-24Al-llNb (IMC) 
composites induced during cooling processes from the 
fabrication temperature Tf = 900CC to the ambient 
temperature Tf = 20°C are investigated. The fibers are 
assumed to remain elastic during the process and the 
matrices are modeled as bilinear elastic-plastic strain 
hardening materials. The thermal and mechanical 
properties of the matrices used in this study are taken 
from [4] and are shown in Fig. 2 in function of 
temperature. In general, the thermal stresses increase 
when the composite cools down from the assumed 
stress-free  fabrication  temperature.  However, during 

cooling the yield stress of the matrix is also increasing 
(Fig. 3). Consequently, any plastic deformation will only 
be generated if the increase in thermal stress is greater 
than the increase in the yield stress. 
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Fig. 3: Effects of temperature on the yield surface. 

The von-Mises yield criterion along with the associated 
flow rule are used to define the onset and progression of 
plastic deformation. The strain hardening is indicated by 
the plastic modulus, Ep. The 3-D constitutive relations 
representing either kinematic or isotropic hardening 
(work hardening) are considered in the numerical 
calculations. It is noted that the current yield surface is 
dependent on the temperature and amount of plastic 
deformation accumulated as shown in Fig. 3 for 
isotropic hardening. The thermal stresses at Tr = 20°C 
are referred to as the residual stresses whether any 
plastic deformation is present or not. 
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Results and Discussion 
The analysis of the SCS-6/Ti-6Al-4V composite has 
shown no sign of plastic deformation for cooling from 
the processing temperature ( 900°C ) to about 360°C. 
The matrix starts to deform plastically at the end zone 
when the temperature drops below 360°C and the plastic 
area is gradually spreading into the inner zone where no 
plastic deformation has been calculated using 2-D plane 
strain models [4-6]. A plot of the history of the 
equivalent stress at points Pj and P'i and the matrix yield 
stress during cooling is shown in Fig. 4. As the plot 
shows, the equivalent stresses are exceeding the yield 
stress in the temperature range of 360-150°C.  At 
temperatures between 150°C and room temperature the 
matrix  experiences   no   further   increase   in  plastic 
deformation.    Thus,    the    occurrence    of    plastic 
deformation is not monotonically dependent on the 
temperature   increments.   If  the   current   equivalent 
thermal stresses which are increasing with temperature 
remain bellow the yield stress of the constituents (which 
is also increasing),  no plastic deformation will be 
generated in either the fiber or the matrix. 
This limited amount of plastic deformation has been 
observed   in   [1]   utilizing   the   neutron   diffraction 
technique and numerically calculated in [6]. However, in 
that study much higher CTE has been considered for the 
matrix than the values used in the present study. 
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Fig. 4: Stress History at Pi and P'i for Ti-6AI-4V matrix. 

For the SCS-6/Ti-24Al-l INb composite a history of the 
equivalent von-Mises stress in the matrix over the 
cooling period in both the inner zone and the end zone is 
shown in Fig. 5. Comparing the curve for the inner zone 
with the results of Ref. [4] for the rectangular fiber array 
unit cell shows that, for Ti-24Al-llNb, the 3-D model 
predicts that yielding starts at lower temperatures (i.e. 
with higher stresses). The Ti-24A1-1 INb matrix, like the 
Ti-6A1-4V matrix discussed earlier, deforms plastically 
during cooling from the processing temperature. The 
plastic deformation starts at about 450°C and continues 
up to room temperature. The equivalent plastic strain 
profile of the matrix at room temperature is shown in 
Fig. 6, indicating that a significant portion of the matrix 

has deformed irreversibly. Similar large plastic 
deformations have been reported in [4,12]. Such plastic 
deformations can significantly redistribute and relax the 
stresses. This phenomenon may highly affect the 
performance of the composite in service, in particular, 
when exposed to mechanical loads. 
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Fig. 6: Spreading the plastic strain zone in Ti-24AI-1 INb matrix. 

The stress redistribution for Ti-24A1-1 INb matrix due to 
large plastic deformations is indicated in Fig. 7 where 
plots of the radial and hoop stress components in the 
inner zone for a temperature before the onset of plastic 
deformation and at room temperature are presented. The 
maximum of the compressive radial stress, which is 
initially located on line P2B at point P2, due to the stress 
redistribution, is transferred at room temperature to 
point Pi along line PtA. The maximum hoop stress 
which first occurs at point Pi (before yielding starts), 
moves to a point inside the matrix area close to the 
interface on line P2B. Similar changes in location of the 
maximum and minimum stresses have been reported in 
[5] for Al/SCS-6 composite. In that paper these changes 
have been also attributed to the stress redistribution due 
to the matrix plastic deformation. 
The plastic deformation changes the profile of the axial 
stress in the matrix, from relatively uniform before 
yielding starts, to a pattern with the stress reduction 
moving toward the fiber/matrix interface. Similar axial 
and  hoop stress profiles have  been experimentally 
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measured at room temperature in [3] utilizing X-ray 
diffraction for SCS-6/Ti-24Al-llNb composite. 
Comparable results have also been obtained in [13]. 

a) 
Matrix Stresses before Yielding (T=450 C) 

n—i—i— 250 

200 

150 

100 

50 

0 

-50 
,~. I       Radial Stress (Line P2B) 

-150 

HoopSuess (Line PIA) 

Radial Stiastfine PIA) , 

Matrix ni«r 

, I 
10     20     30     40    50     60     70     80     90 

Distance (urn) 

Matrix Stresses at Room Temp. 
" """       -i—n—i  

10     20     30     40     50     60     70     80     90 
Distance (um) 

Fig. 7: The stress redistribution due to plastic deformations. 

Conclusions 
The following conclusions are drawn from the results of 
the present study: 
• The analysis has revealed that during cooling the 

behavior of Ti-6A1-4V matrix is elastic at high 
temperatures and becomes elasto-plastic at an 
intermediate stage only. Any plastic deformation 
will only be generated if the increase in thermal 
stress is higher than the increase in the yield stress. 

• the better agreement of the 3-D model results with 
experimental measurements indicates an advantage 
of the 3-D models over the widely used 2-D plane 
strain models. 

• The relatively high tensile radial and hoop stresses 
that appear during the process may damage either 
the interfacial bonding (and cause circumferencial 
cracking in the matrix) or initiate external and/or 
internal cracks. 

• The final stress state depends on the amount of 
plastic deformation generated. High plastic 
deformation can cause relaxation and redistribution 
of the residual stresses. 
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Fatigue Behaviour of Fully Compressive Loaded Welded Joints with 
High Tensile Residual Stresses due to Welding 

JJPucelik*, TkNitschke-Pagel*, H.Wohlfahrt* 

♦Welding Institute, University of Braunschweig, Germany 

Butt welded joints of the high strength structural steel StE 690 with high tensile residual stresses and stress 
relieved joints were investigated under compression compression loading. The residual stresses were 
measured by means of X-rays before and during fatigue loading, crack initiation was controlled by 
ultrasonic testing. The S-N curves determined for specimen fracture as well as the number of cycles to 
incipient cracks of the two treatments showed small differences. Therefore a significant influence of tensile 
residual stresses on the fatigue strength under cyclic compression loading can not be confirmed. The 
residual stresses within the weld were strongly reduced already during the first load cycles. Mostly the 
cracks started in the fine-grained zone, and that is to say in the region with very low tensile or even low 
compressive residual stresses. The conclusion is, that not the residual stresses, but the drop in hardness 
or strength, which represents a microstructural notch, is the dominating effect on crack initiation. 

1.        Introduction 

Investigations carried out so far regarding the influence 
of residual stresses on the fatigue strength of welded 
structural and high strength fine-grained steels have 
looked mainly on the cyclic tension loading and 
alternating tension and compression loading. In this 
case, especially for joints loaded transverse to the weld 
seam, the fatigue strength is determined primarily by 
notches at the weld toe [1,2]. However, if the weld seam 
profile and the geometry of the weld toe are improved 
using optimized welding technology, the significance of 
notches decreases increasing the importance of welding 
induced residual stresses on the fatigue strength of 
transverse butt welds of high strength steels. The residual 
stresses due to welding are also of signicance for the 
influence of mean stresses on the fatigue strength [3,4]. 
According to the model of Gurney [5] however, the 
fatigue strength of welded joints is independent of the 
amount of mean stress or the stress ratio, if tensional 
residual stresses within the welded seam and at the weld 
toe resemble the material yield strength. In this case, a 
quasistatic stress relief during the first cycle is assumed, 
if loading and residual stresses in the same direction are 
combined, exceeding the yield strength. Residual 
stresses should then be reduced to the extend by which 
the sum of load stresses and residual stresses exceeds the 
material yield strength and the maximum stress is 
adjusted to the magnitude of the yield strength 
independent of the stress ratio. Therefore, different 
tension mean stresses below the yield strength can result 
in the same fatigue strength. This model takes not into 
account, that the welding induced residual stresses 
within the weld seam and particularly at the weld toe 
mostly - especially in high strength steels - do not reach 
the yield strength. Additionally, the model does not 
consider the often signicant relief of the residual stresses 
during cyclic loading, even if the sum of the loading and 
residual stresses does neither reach the yield strength nor 
the cyclic yield strength. It can be shown that residual 
and tensile mean stresses affect the fatigue behaviour of 
welded joints under cyclic tension or alternative tension 
compression loading if the magnitude of the tensile 
residual stresses is considerably below the yield 

strength [4]. To day only a few results are available 
pertaining to the influence of tensile residual stresses on 
the fatigue strength of welded joints under compression 
loading [e.g 6,7]. These results are not sufficient for a 
safe and economic layout of structural members. It is 
assumed, that crack growth in welded joints under 
compression loading is possible in the case of presence 
of tensile residual stresses due to welding, because a 
compression-compression loading does not contain 
positive parts. Up to now, information on the possible 
relief of welding induced residual stresses during 
compression loading does not exist It was the aim of the 
investigations presented here to contribute to the 
knowledge regarding the influence of tensile residual 
stresses on the fatigue behaviour of welded high strength 
steels under compression loading. 

2. Materials and methods 

The investigations were carried out using high strength 
fine-grained structural steel StE 690. The weld material 
was a welding wire with the same stength as the base 
material. The chemical composition and the strength 
values of both materials are given in Table 1. Sheet metal 
strips of 300x90x10 mm prepared for welding by shot 
peening were provided with a double-U weld preparation 
transversal to the direction of the applied load strtess. A 
six-layer TIG-Welding with an alternating sequence of 
layers and the parameters shown in Table 2 was used to 
minimize angle distortion and notch sharpness at the 
weld toes. Relatively high residual stresses were 
generated using a sufficiently high heat input estimated 
according to the t8/5-equation [8]. Finally the testing 
cross section of 50x10mm2 was carefully cut out using 
a rotary grinder under intensive cooling to prevent stress 
relief during manufacturing. Subsequently, some of the 
specimens were annealed for 30 minutes under gas shield 
at 600°C to relieve the residual stresses. 
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Table 1: Chemical composition and strength characteristics of base and filler material. 

Chemical composition in weigth-% and strength characteristics 

C Si Mn P S G Mo Ni V Rm(MPa) Re (MPa) As 
(%) Av(%) 

StE690 0.17 0.65 0.85 0.009 0.004 0.726 0.321 — — 840 757 15 75 (T=-40°C) 

Wire 0.1 0.6 1.6 — — 0.3 0.25 1.0 0.1 >790 >690 16 >47 (T=-60°C) 

Table 2: Welding parameters (shielding gas:99.99% Ar) 

Pass 
Base 

current 
(A) 

Poised 
current 

(A) 

Are 
voltage 

(V) 

Welding 
speed 

(cm/min) 

Heat 
input 

(kJ/cm) 

Pre- 
heating 

CO 

U 170 240 10 10 12.3 120 

3,4 200 280 11 10 15.8 120 

5,6 225 320 12 10 19.6 20 

The fatigue strength experiments were conducted under 
cyclic compression loading (K=-1) using a 
servohydraulic fatigue testing machine at a uniform 
cycle frequency of 20 Hz. At least six of the specimens, 
in both the as-wlded and stress-relieved state, were tested 
at four stress levels, two within the region of fatigue 
strength or finite life and the transition to fatigue 
strength. The number of cycles until incipient crack and 
the following crack growth within the weld seam was 
determined in some of the specimens by ultrasonic 
testing during fatigue loading. Since a specimen was able 
to transfer high compression forces, even with a high 
proportion of fatigue fracture, the determination of the 
number of cycles until fracture was difficult. In contrary 
to experiments under cyclic tension or tension 
compresion loading, in this case the fatigue strength 
tersting could not be terminated using distance limits. 
Full fatigue fractures with residual forced ruptures were 
rarely found,even at high stress amplitudes in the range 
of fatigue strength or finite life, although none of the 
specimens could be carried up to the maximum number 
of cycles (5xl(r) without incipient cracks. Only with a 
low tolerance for the set value of force, a self-contained 
halt of the testing machine at a high surface proportion 
of fatigue fracture, and thus the determination of the 
number of cycles until fracture could be obtained. The 
residual forced rupture of the specimens was carried out 
after the fatigue testing by static tensile strain. A fatigue 
fracture had to be assumed if the proportion of fatigue 
fracture area exceeded 50% of the cross section area or 
if a crack was running parallel o the weld seam 
throughout entire specimen. The calculation of the 
S-N-curves for fracture probabilities of 5%, 50% and 
95% was carried out in accordance to the 
arcsinVP-transformation [9]. The distributions of 
welding transverse residual stresses before and after 
annealing were measured using Cr-Ka-radiation in a 
stationary \y-diffractometer with a point resolution of 1.5 
mm. The {211}-interference of the ferritic steel was 
recorded at a 11 \|/-angles in a 29-range from 152° to 
160°. The calculation of residual stresses from the 
measured angles was carried out according, to the 

3. Results 

The transverse residual stresses transversal to the weld 
before and after annealing of a completely prepared 
specimen are shown in Fig. 1. In the as-welded state high 
tensile residual stresses of approximately 400 to 500 
MPa were found in the loading direction in the centre of 
the weld seam. The tensile transverse residual stresses 
quickly decrease with the distance to the weld centre and 
pass into the compression range in the base material. The 
compressive residual stresses in the base material have 
been introduced by shot peening the plates before 

SIE 690, Cap pass (6 Pass« TIG) 

sin>-method [10] using l/2s2=6.08 10"° MPa 3 
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Fig. 1: Distribution of welding transverse residual stresses 
before and after annealing. 

welding. In the weld toe tensile residual stresses of 
oRS=175±78 MPa (average of 40 specimens) exist. The 
distribution of the transverse residual stresses was not 
changed by annealing, but the curve was flattened. The 
highest stress relief is reached in the centre of the weld, 
down to values of approximately 200 to 300 MPa, 
transverse tensile residual stresses in the weld toe of the 
annealed specimens amounted to oRS=101±46 MPa 
(average of 4 measurements). 

The hardness distributions of the cap passes of both 
treatments determined at a distance of 0,5 mm from the 
surface are shown in Fig.2. The hardness values of the 
specimen annealed after welding slightly exceeded those 
of the as-welded specimen. In both cases however, the 
hardness values decreased strongly in the transition zone 
to the base material, went through a minimum in the 
fine-grained zone of the heat-affected zone and then 
increased again up to the hardness of the base material. 

In Fig.3 the S-N curves of the transverse butt weld 
specimens in the as-welded and in the stress-relieved 
state are shown under consideration of the number of 
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Fig.2: Hardness Distributions before and after stress 
relief annealing 

cycles until incipient cracks of approximately 1 mm 
depth, determined by ultrasonic testing. In most cases 
the cracks expanded very slowly after initiation and 
rarely extended over the entire diametre of the specimen. 
This was the reason for the method of defining fractures, 
as described before. The numbers of cycles until 
incipient cracks decreased with increasing stress 
amplitude and were comparable for both treatments, 
regarding the variation within the measurements. In spite 
of the early crack initiation all samples reached high 
numbers of cycles until fracture. At the lowest stress 
level (Oa=275 MPa), for example, all samples went up 
to the maximum number of cycles (5x10 ). Comparing 
the specimen fractures, an overall lower variability of 
the stress-relieved samples is remarkable, which is the 
main reason for the distinct difference in the slopes of 
the fatigue strength lines for finite life of both treatments. 
The difference between the compressi ve fatigue strength 
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for the fracture probabilities shown in Fig.3, however, is 
very small (as-welded: 300 MPa, stress-relieved: 294 
MPa). 

In some of the as-welded specimens, changes in residual 
stress under cyclic compression loading were 
determined after N=l and N=10 cycles. These 
investigations confirmed a relief of the welding induced 
residual stress within the welding seam and in the weld 
toe, at high stress amplitudes, in the range of fatigue 
strength for finite life, already at the beginning of cyclic 
loading. An example for the reduction of residual stress 
is shown in Fig.4 for a specimen which was loaded at a 
stress amplitude of 350 MPa under cyclic compression 
loading. The residual stresses at the weld toe were almost 
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Fig. 3: S-N curves of compressive loaded transverse butt 
welds in the as-welded) and stress-relieved state for 
fracture probabilities of 5%, 50% and 95%. 
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Figure 4: Distribution of the transverse residual stresses 
before and after after fatigue loading. 

completely relieved. After 10 cycles with a stress 
amplitude of Ca=350 MPa, transverse tensile residual 
stresses in the weld toe showed an average of o^=36±26 
MPa. Under stress amplitudes in the range of fatigue 
strength (Oa=100 MPa and Ca=200 MPa), no significant 
reductions of the residual stresses during the first cycle, 
and even up to 1000 cycles, were observed. 

Apart from the pass structure in the transverse butt welds 
in Fig. 5 the location of incipient cracks and the further 
development of the fatigue fractures of a specimen 
loaded under cyclic compression in the as-welded state 
are shown. The incipient cracks are located on both sides 
of the weld at a constant distance to the weld toe in the 
area of the fine-grained zone. After crack initiation at the 
surface continued crack growth took place vertical to the 
applied cyclic compression loading. Additionally, it 
should be noticed that incipient cracks were found not 
only on the side of the specimen with high tensile 
residual stresses within the weld (second pass) but also 
on the side with low tensile or compressive residual 
stresses within the weld (first pass), as shown as an 
example in Fig.5. The crack and fracture behaviour, as 
described before, is typical for both specimen treatments. 
In the as-welded, as well as in the subsequently annealed 
samples, the incipient crack was initiated at a distance of 
approximately 2 to 2.5 mm from the weld toe in the 
fine-grained zone of the heat affected zone. 
Subsequently,   the  cracks   proceeded   through  the 

113 



Figure 5:  Weld  profile and fatigue cracks  after 
compression-compression loading (ca= 350 MPa). 

specimen, parallel to the weld or the weld toe. No fatigue 
cracks appeared directly at the weld toe. 

4. Conclusions 

The results of this investigation have evaluated, that, as 
would be expected, the highest tensile residual stresses 
were found in the weld centre, however, the tensile 
residual stresses at the weld toe were also sufficiently 
high. The stress-relieved specimens showed similar 
residual stress distributions, but with overall lower 
tensile residual stresses. Obviously, the higher hardness 
values in the weld material of the subsequently annealed 
specimens are a consequence of the precipitation of 
vanadium during annealing [11]. The tendency of the 
weld material to harden under heat treatment was 
confirmed by the fact that the first cap pass, which was 
heated up for a short time during the application of the 
second cap pass, also showed slightly higher hardness 
values than the second cap pass. In both treatments 
however, a lower strength was found in the fine-grained 
area of the heat affected zone, which was confirmed by 
the drop of hardness in this area (see Fig.2). The numbers 
of cycles to incipient cracks were similar for the 
as-welded and the stress-relieved specimens. All of the 
cracks started in the fine-grained zone, and that is to say, 
in the region of the welds with very low tensile or even 
low compressive residual stresses. Cracks were located 
at a distance of 2 to 2.5 mm parallel to the weld toe in 
the region with the lowest hardness see Fig.2). The 
cracks occured on both sides of the specimens 
independent of the magnitude of the initial residual 
stresses. Therefore, it can be concluded that the 
dominating factor for crack initiation is the 
microstructural notch caused by the drop in hardness or 
strength. In spite of the early occurrence of incipient 
cracks, the specimens of both treatments reached high 
numbers of cycles before fracture, as shown in Fig.3. The 
S-N curves determined for the specimen fracture of both 
specimen treatments showed only minor differences. For 
example the fatigue strengths of both treatments at a 
fracture probability of 50 % showed a negligible 
difference. Although the slope of the S-N-curve of the 

as-welded specimens is higher, no further influence of 
the residual stresses on the endurance or the fatigue 
strength can be confirmed. It can only be assumed that 
the stress-relief treatment led to adverse material 
properties regarding fatigue strength under compressive 
loading within the welding seam. 

The negligible influence of the residual stresses can also 
be confirmed by the change in the tensile residual 
stresses during the first cycles of compressive loading. 
Already after the first load cycle, the residual stresses 
were reduced to approximately 100 MPa over the whole 
range of the welding seam. The applied minimum stress 
resulted in an inhomogeneous elastic-plastic 
deformation within the fine-grained zone due to the 
lower strength in this region. Because of this reduction 
of the residual stresses by deformation, only very low 
tensile residual stresses were effective at the weld toe in 
the direction of loading. It is therefore not likely that 
welding induced residual stress can have an effect during 
a total cycle number of 5 x 106. The S-N curves 
determined for the specimen fracture, as well as the 
number of cycles to incipient cracks of the two 
treatments showed only small differences which were 
not sufficient enough to confirm a significant influence 
of the residual stresses due to welding on the fatigue 
strength under cyclic compression loading. Neither the 
notch at the weld toe nor tensile residual stresses led to 
crack initiation within the weld toe which is the critical 
region under cyclic loading with load stress maxima in 
the tensile range. Obviously under pulsating 
compressive stresses the hardness minimum has a 
dominating effect on crack initiation. 

The authors thank the Arbeitsgemeinschaft industrieller 
Forschungsvereinigungen (ASF) for the support of the 
investigations: 
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A Numerical Procedure for Welding Residual Stresses Estimation 
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This paper presents a study of thermal stresses during welding .considering the prediction of 
the longitudinal stresses acting on bead-on-plate and butt welds on plates or strips.The material is 
considered as strain hardening,and the weld is located at the plate center line or at the strip edge.lt is 
applied the ordinary linear solution proposed by Rosenthal to represennt the body temperature during 
welding. 

Key Words: WeIdmg,Thermdl Stresses.Residual Stresses.Elastoplasticity 

1. Introduction 

The problem of predicting residual stresses due 
to welding has long been recognized by structures 
fabricators as very important but at the same time as 
very difficult one to analyze.The difficulty has its 
origin in the complex mechanism of residual stresses 
formation,which starts from the uneven temperature 
distribution caused by the intense,concentrated heat 
source associated with all fusion welding process.The 
incompatible strains that are formed as a consequence 
give rise in turn to self-equilibrating thermal stresses 
that remain in the weld structure after it has cooled 
down to ambient temperatue,thus producting the so- 
called residual stresses.Figure 1 shows schematically 
the changes of temperature and stresses that occur 
during such a process. 

In naval and marinejiuclear and petrochemical 
industries,there is the necessity of welding thick 
plates during construction and even during repair of 
structures,pressure vessels or reactors,that results in a 
complex residual stresses distribution in the welded 
partThese stresses have great influence on the 
mechanical behavior of the structure,particulary for 
fatigue .fracture and buckling analysis. 

Taking in view the importance of residual 
stresses distribution prediction,this paper presents the 
development of a computer-aided analysis of thermal 
stresses in weldments,considering the prediction of 
logitudinal stress acting on bead-on-plate and butt 
welds on plates or strips .In order to check the 
proposed procedure for welding residual stresses 
estimation^ was conducted an experimental study on 
residual stresses distribution of thick strips,subjected 
to multipasses welding,comparing experimental 
results with analytical predictions. 

2. Analysis of Thermal Stresses 

The methodology that is presented inn this 
paper aims the estimation of the residual stresses 
distribution parallel to the weld line,as a function of 
the lateral distance of the weld line.Such an analysis 
is referred to hereinn as the one-dimensional analysis. 
The basic assumption inherent in the one- 
dimensional stress analysis is that the only stress 
present is the one parallel to the weld line, ox ,being 
a function of the transverse distance from the weld 
centerlineonly,andthat oy and T^ .respectively 
transverse stress and shear stress,are zero,according 

to the coordinate system presented in Figure 2. 
The algorithm for solving the problem is based 

on the method of sucessive elastic solution as 
proposed by Mendelson [l],taking into account the 
temperature dependance of material yeld 
strength,considering also the material linear strain 
hardening.The analysis is based on the temperature 
distribution along the welding process,and the output 
of the algorithm,at each time step .consists of total 
strain,mechanical strain .plastic strain and thermal 
stress at each of the predetermined points located at 
various transverse distance from the weld 
centerline,as shown in Figure 3. 

2.1 ANALYSIS of HEAT FLOW 

The methodology employs the 
RosenthaL[2],analytical solution of the problem of 
heat flow during welding,which is based on the 
following assumptions:i)the welding is performed 
over a sufficient length so that the temperature 
distribution around the heat source would not change 
if viewed from a coordinate system moving with the 
heat source;ii)The physical properties of the 
conducting medium are constant;iii)The heat losses 
through the surface of the conducting medium to the 
surrounding atmosphere are neglected;iv)The 
conducting medium is semi-infinitely large in the 
three-dimensional analysis,when the heat source is 
considered as a point. 
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For a finite thick plate,the temperature 
distribution is calculated through the following 
expression: 

vR 
Ik Q 

T-T    =   e         < 
°        2Tfk 

z 
n=l 

'Ü2 
2A 

vK'*  n 
2X 

R' 
n (1) 

T .temperature at a given time step t 
TQ initial temperature 
Q total heat input,function of arc 

efficiency.welding current and arc 
voltage 

E, =   x - vt   moving coordinate 
v. arc travel speed 
t. time 
(x,y,z) fixed cartesian coordinate system 

R     =   U2+y2+z2}1/2 

h thermal conductivity 
^     a   JL  thermal diffixsivity 

Pc 

p density 
c specific heat 

*n   "    [€2+y2+(2nh-z)2]1/2 

K    -    tS2+y2+(2nh+2)2]1/2 

2.2 STRESS CALCULATION 

The stress calculation is based on the method 
proposed by Mendelson[l],for obtaining the 
elastoplastic stress and strain distribution in a 
thermally stressed plate,considering the temperature 
distribution constant along the specimen thickness. 

Assuming °x the only nonzero stress,the 
stress-strain for a given point along the strip width,for 
a given time during welding process,considering the 
incremental behavior of plastic strain due to 
temperature time variation during welding, can be 
written as: 

ex 

where: 

n-l      p p 
+ off     +      Z  Ae„   + Le*   m 

n i=l      xi xn W 

longitudinal stress at a given time n 

xn longitudinal atrain at a given time n 

o thermal expansion coefficient 
E elasticity modulus 

T temperature change from reference 
n temperature 

n   1        P .1' Acxi    cumulative plastic strain increments 
until the time before time n 

A< plastic strain increment at time n 

To simplify the analysis,equation 2 can be 
written in a nondimensional way,as follows: 

n 

where 
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and      n»x        ex mechanical strain (4) 
and where the values with suffix zero represent 
reference values at room temperature. 

Since there are no external forces,integrals for 
the net force and moment must satisfy the following 
condition: 

J   sx dr, -   o        j s   n dn  =   o 
X 

y 
n =■   - 

width 
(5) 

and that e
x   

=   a + b n ,due to the assumption of 
Tw =  °    =0,and taking in view equation 5,the xy y 

mechanical strain can be written as: 
i)strip (weld at edge) 

fi        a-l     p p 
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(6) 
ii)plate(weld at center line) 
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116 



iK**},I Ae      ndn 

(7) 
At equations (6) and (7) the elasticity modulus 

is considered as a constant,with no variation with 
temperature. 

Taking in view the above equations,it is possible 
to verify the dependance between the mechanical and 
plastic strain,at a given time.So the calculation of 
mechanical strain at a given time is 
interative,begining with the adoption of ^e

p     =0 

and defining    e .Through equation (5),it  is 

(e   ) 
defined mx 

n     and based on the stress-strain 
relation of tue material,« is defined the stress and 
strain   in   the point With   this new   value     of 

P 
plastic strain,it is redefined the value   A ex   ,and the 

n 

calculation procedure is repeated. This   procedure 

P 
is repeated  until   the convergence of  Ae^   ,with 

the definition of   S      . n 

It is also important to notice that the stress and 
strain state ina given point is dependent on the strain 
and stress of the other points along the width of the 
transversal cross section of the strip or plate,so the 
calculation must be done at several transverse 
positions simultaneosly. 

The temperature and thermal stresses 
calculation must be done at a given number of time 
values,through the welding process,including the 
heating and cooling periods,and the thermal stress 
distribution calculated at the last time step can be 
considered the residual stress induced by welding 
process. 

This algorithm of residual welding stresses 
calculation for plates and strips was implemented in a 
computer program for IBM/PC microcomputers. 

3. Experimental Studies of Residual Stresses 

In studying thermal stresses during welding,« is 
important to compare experimental results with 
analytical predictions.Since most of the experimental 
technics employed in residual stresses analysis are 
destructive,« is usually used test specimenns for this 
analysis,welded to specific welding conditions,similar 
to those applied in industrial welding. 

Figure 4 shows the test specimen geometry and 
location of strain gages.The material was ASTM- 
A131 Grade A carbonn steeLThe specimen was 500 
mm long,13S mm wide and SO mm thick.Welding 
was done along the upper edge of the vertically 
positioned specimen,which was supported at both 
ends of the lower edgcThe weld was  IS  mm 

thick,employing a multipass shielded metal arc 
welding.The reason why the specimen is unusually 
long is to permit the full development of the residual 
stress distribution through its widu\near the mid 
length transverse cross section.Table 1 lists welding 
conditions for the two welded specimens used in this 
study. 

After welding was complete and the specimen 
cooled to room temperature,twelve uniaxial strain 
gages were mounted along its midlength,on welded 
and lateral surfaces,in order to measure residual 
stresses acting on specimen surface,as shown in 
Figure 4. 

For residual stresses measurements was 
employed the Stress Relaxation Method,[4J,which is 
based on the hypothesis that the residual stress 
distribution is defined through the strain relieved 
measured by strain-gages,after the remotion of small 
parts,containing the sensors,from the specimen. 

For residual stresses measuremennts,a strip 50 
mm wide was removed from the specimen and 
then,through the employment of splitting and slicing 
procedure,there were obtained the small parts of this 
blocks,containing the strain-gagesAmounts of stress 
relaxation were measured and residual stresses were 
determined through the application of Theory of 
Elasticity concepts. 

4.£xperimental And Theoretical Results for 
Residual Stresses Distribution 

Figure 5 shows the distribution of surface 
longitudinal residual stresses,      ox .along the 
midlength section,experimentally and theoretically 
defined. 

The experimentally defined stress distribution 
can be interpreted as a combination of the following: 

i)The shrinkage of the weld causes high tensile 
residual stress in region near the weld and moderately 
low compressive stress in regions away from the 
weld-The tensile residual stresses values are almost 
equal to the material yeld stress at room temperature. 
ii)The oxi-cutting process employed for specimen 
preparation causes relatively high tensile stress in the 
unwelded edge. 

Reasonably good agreements were obtained 
between experimental data and analytical 
predictions,except for residual stress in the weld 
surface,where the effect of multipass weld procedure 
is more significant.Furthermore,the residual stresses 
theoretically predicted for the unwelded edge is lower 
thhan the experimental value,because the theoretical 
calculation procedure do not take in account the oxi- 
cutting process.The procedure presented in this paper 
predicted very well the high tensile stresses acting in 
the specimen near the weld line ,which is very 
important,taking in view the detrimental effect that 
this tensile stress has on the structure behavior^nainly 
in brittle fracture or fatigue annalysis. 
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5.Concluskms 

The procedure presented in this paper has 
proved to be adequate for prediction of welded 
induced longitudinal residual stresses distribution 
acting on planar welding of plates or strips,being 
capable of estimating the high tensile stresses acting 
near the weld line,related to shrinkage of the 
welcLwith a good accuracy.lt could be used for 
analyzing longitudinal thermal and residual stresses 
induced by weld in structures composed by strip or 
plates with long weld lines,at least during the early 
design stages. 

Since the program execution is rather 
inexpensive,it can be used as a tool to simulate 
various welding condition,in order to define the 
guidelines for the optimun welding procedure for a 
given structural geometry.taking in view the reduce of 
residual stress magnitude through the variation of 
welding current,arc voltage, or welding speed. 
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Voltage 22 V 
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FREQUENCY-TEMPERATURE INTERACTION OF STIFFENED 
FLAT PANELS FEATURING INITIAL GEOMETRIC IMPERFECTIONS 
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This study deals with the vibrational behavior of stiffened flat panels subjected to heating and a 
lateral pressure load. The effects played by the various reinforcement schemes and the initial geometric 
imperfection on the vibration in both prebuckling and postbuckling equilibrium ranges are considered and 
a number of pertinent conclusions are highlighted: 

Keywords: Reinforced Plate, Frequency-temperature Interaction, Postbuckling. 

1. Introduction 

As the concept of high-speed, highly flexible and 
light structural weight aircraft capable of operating 
in a hostile flight environment gathers more impetus, 
the specialists are more and more challenged with 
a variety of new technical problems involving its 

Such new problems are generated, among others, 
by the fact that the advanced supersonic and hyper- 
sonic flight vehicles are likely to experience, during 
their operational life, high temperatures and pres- 
sure gradients. Moreover, these vehicles will typi- 
cally experience these loadings in a dynamic envi- 
ronment. Changes in the vibration characteristics 
of panels due to thermo-mechanical load interaction, 
affect their dynamic response and flutter-behavior. 
For this reason, understanding the effects of ther- 
momechanical loads on vibration of flat and curved 
panels is a fundamental step in determining and un- 
derstanding the dynamic behavior of structures ex- 
posed to such loading conditions. In spite of the 
great significance in the dynamic analyses of ad- 
vanced flight vehicle structures, results on the vi- 
brational response of stiffened panels under thermo- 
mechanical loadings appear to be extremely scarce. 
This paper is intended to supply information on this 
topic, namely on the frequency-load interaction of 
reinforced flat rectangular panels exposed to an el- 
evated temperature field. The effect of initial geo- 
metric imperfection on frequency-load interaction of 
reinforced panels is assessed and conclusions on its 
implications are outlined. 

2. Preliminaries. Basic Equations 

Consider the case of rectangular isotropic flat 
panels reinforced by orthogonal stiffeners parallel 
to the panel edges. Consistent with the usual 
procedure, the stiffeners in the mutually orthogonal 
directions are assumed to deform independently. 
One assumes that the panel is exposed to a uniform 
through thickness temperature field 

r(&,6,6)=r(&,6) (i) 

measured from a stress-free temperature TT. In Eq. 
(1), |i and & are the in-plane Cartesian orthogonal 
coordinates of the mid-plane of the plate, while £3 
is the transversal coordinate, positive in the inward 
direction. 

o 
The uniform temperature T can be denned as 

T= (Tu+Tb)/2 wherein = r&.&.fc = -fe/2) and 
Tt = T(£i,£2,£3 = A/2) denote the temperatures 
on the upper and bottom faces of the panel, 
respectively, while h denotes the uniform thickness 
of the panel.  We will assume the existence of an 

initial geometric imperfection V3 (CI.&JCS) =«3 
(£ij&) which refers to the transverse displacement 
in the unstressed configuration. 

The main geometrical characteristics of stiffened 
panels in terms of which their cross-sectional 
properties are determined are depicted in Fig. 1. 

From the constitutive equations, not displayed 
here, one can infer that in the presence of stiffeners, 
due to the asymmetry of the resulting panel, a 
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bending-stretcbing coupling is present. This fact 
which will be reflected further in the governing 
equations, implies, among others, that a uniform 
temperature field throughout the thickness of the 
panel and stiffeners will produce bending from the 
onset of heating. This reverts to the conclusion 
that in contrast to the case of non-stiffened and 
geometrically perfect panels, in the present case, 
the panel will not exhibit the thermal buckling 
bifurcation. 

3. Governing System 

In the present study, the nonlinear equations gov- 
erning the thermomechanical response of stiffened 
flat panels are represented as a generalization of 
the classical von Karmän-Marguerre nonlinear plate 
theory, in the sense that the relevant equations in- 
clude the effects of initial geometric imperfections 
and the presence of uni/biaxial stiffeners. As in 
the case of the non-stiffened classical plate theory, 
these equations are reduced to two partial differ- 
ential equations in terms of the Airy stress func- 
tion F(— F(£i,£,2,t) and the transverse deflection 
«3(6,6,*) as: 

,1212 •Ä1-F2222 + -42^,1111 + 2 (ß + .F) FA 

- \Ci + C2J U3,U22 — 2?1«3,2222 — 2>2«3,1111 

+ «3,11«3,22 — «3,12«3,12 + «3,H«3,22 (2o) 
o o 

+ «3,22«3,11 — 2^3,12^3,12 

+ x(ii1Ti22 + ihTtii\ = 0, 

DAAv3-F,22 (V3,II+53,H)--F;H («3,22 + «3,22) 

+ 2F.12 («3,12 +«3,12) - OiF,H22 - 02F,mi 

— C>3F,2222 + 04U3,n22 + OsU3,iin + 06^3,2222 

- A(07f ,n +08T,22) - » + mov3 = 0. 
(26) 

Herein A denotes the 2-D Laplace operator, F 
is defined as Laß = CauCßgF^s where caß is the 
permutation symbol and the Einstein summation 
convention over repeated indices is implied. 

The coefficients appearing in Eqs. (2) are not 
displayed here. Equations (2a,b) are referred to 
herein as the von-Karman type compatibility and 
transverse force equilibrium equation, respectively. 

A simple inspection of the nature of coefficients 
O7 and C>8 will disclose that the terms in the 
bending equations associated with the membrane 

temperature subsist only in the case of a reinforced 
panel. This shows again that in reinforced panels 
the membrane temperature induces both stretching 
and bending. 

In the present study the edges are considered 
to be simply supported. It is supposed also that 
the tangential motion of the panel, in the normal 
direction to the edge is unrestricted (movable edges). 
Denoting by n and t the in-plane directions normal 
and tangential to the panel edge, the pertinent 
boundary conditions are: 

v3 = 0; Mnn = 0; Lnt = Lnn = 0. (3) 

4. Numerical Illustrations and Discussion 

Using the postbuckling governing equations not 
displayed here, an assessment of the effects played 
by an uniform through thickness temperature field 
and a lateral pressure on the natural frequency 
of stiffened flat panels will be accomplished. 
Throughout the numerical applications, the case of 
a simply supported square panel (Li = i2 = L) 
is considered. One also assumes that both the 
panel and stiffeners are of aluminum i.e. that 
ET = Es = E = 10.4 x 106 psi, v = 0.32 and 
a = 13.15 x 10~6in/in/°F. It is also assumed, unless 
otherwise specified, that Li/h = 50, L\ = lOin; 
ttIL = £r/L = 5 x 10~2;ßs/L = ßr/L = 2 x 10~3 

and br/L = bs/L = 5 x 10 2. For an uniaxially 
stiffened panel, say in the x\ - direction, one should 
consider in the £2 - direction that br = ßT = 0 and 
LT =*• 00. 

The results are presented in the form of 
interaction curves that relate the magnitude of 
the average middle plane temperature amplitude 
o 

Tu to the square of the fundamental frequency, 
S72(= u2m0Lf/(n4D)) as a function of geometric 

o o 
imperfection  amplitude  Sn(=   fu/h)   and  the 
intensity of the lateral pre-load qu(= qnLi/(Dh)). 

The effects of uniform through thickness tem- 
perature increase on the fundamental vibration fre- 
quency of geometrically perfect flat panel are dis- 
played in Fig. 2 where three scenarios are involved. 

These concern the cases of the no reinforced, 
uniaxially and bi-axially reinforced panel. The 
results indicate that in the first situation, the 
fundamental frequency decreases linearly with 
increasing thermal load prior to buckling. 

At buckling, the fundamental frequency is zero- 
valued. In the case of reinforced panels, due to the 
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coupling between bending and stretching induced 
by the non-symmetry of the panel, out-of-plane 
deflections are induced at the onset of the membrane 
thermal load and no buckling bifurcations are 
featured.    The results from Fig.     2 show that 

o 

in the absence of the temperature load Tu = 
0), the fundamental frequency of the bi-axially 
reinforced panel is larger than that of the uniaxially 
reinforced panel counterpart and both of them 
are larger than that of the no reinforced panel. 
In the case of reinforced panels the fundamental 
frequency decreases monotonically as the amplitude 
of the membrane temperature increases and their 
increases monotonically. This trend is due to the 
stiffening caused by the increased participation of 
the membrane stiffness as the deflection becomes 
larger. Another conclusion emerging from Fig. 2, 
concerns the amount of bending-stretching coupling 
featured by the uniaxially and bi-axially reinforced 
panels. As is readily seen, from Fig. 2, in the 
former case, the fundamental frequency reaches, 

o 
at a certain value of Tu, a rather close to zero 
value, whereas in the latter case the minimum 
value of the fundamental frequency is rather far 
from zero. The relative distance from zero of 
the fundamental frequency constitutes a measure of 
bending-stretching coupling involved in a reinforced 
panel. 

It is also seen from Fig. 2 that for a bi-axially 
reinforced panel, the frequency irrininuim is shifted, 
as compared with the uni-axially and no-reinforced 
panels, towards larger amplitudes of the membrane 
temperatures. 

From the same graph it also becomes evident 
that in the deep non-linear range the no-reinforced 
panel features larger frequencies than its uni-axially 
and bi-axially reinforced panel counterparts. This 
trend is attributed to the fact that in that range, 
there is an increased participation of the membrane 
stiffness in the non-reinforced panels as compared to 
that in the reinforced ones. 

In Fig. 3 comparisons of the frequency-tempera- 
ture interactions in non-reinforced, uniaxially and 
bi-axially reinforced panels subjected to lateral pre- 
loads of intensity qu = 0 and qu = 50 are presented. 

The plots show that the lateral pre-load increases 
the minimum of the frequency featured by the 
panel in the absence of the lateral pre-load. It is 
also seen that beyond that temperature renderings 
the frequency minimum, the variation path of the 
frequency when qu ^ 0, follows closely that 
occuring in the case of qu = 0. 

Finally, the effect of an initial geometric imper- 
fection on the frequency-temperature interaction of 
a panel subjected to a lateral pre-load is presented in 
Fig. 4. Herein, the three scenarios concerning the 
non-reinforced, uniaxially and bi-axially reinforced 
panel are considered. 

The results show that the initial geometric 
imperfection plays, on the frequency-temperature 
interaction, a similar role to that of the lateral 
pre-load. It is interesting to see also that 
an initial imperfection of the same amplitude 
plays a stronger role in increasing the minimum 
fundamental frequency in the bi-axially reinforced 
panels than in the uni-axially reinforced panel 
counterparts, and a much stronger influence as 
compared to the non-reinforced panels. Needless to 
say, in all the cases, due to the presence of the lateral 
pre-load and the existence of the initial geometric 
imperfection, the panel will not exhibit buckling 
bifurcation, and as such, the frequencies will not 
become zero valued quantities. 

5. Conclusions 

A parametric study of the vibration behavior of 
reinforced flat panels featuring initial geometric im- 
perfections and subjected to thermal and mechanical 
loads has been presented. The loads considered in 
this study consists of a lateral pressure and a non- 
uniform membrane temperature field. Results are 
presented for simply-supported panels. The results 
identify the interactions of applied thermal and me- 
chanical loads and the fundamental frequencies of 
the panel. The results show that the reinforcements, 
initial geometric imperfections, and transverse lat- 
eral pressure are all significant factors that should 
be considered in the dynamic design of panels sub- 
jected to a thermal field. 
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It is important to investigate atomic order analysis in order to understand microscopic 
deformation and/or fracture of material. Many investigators have been studying such the problems by 
using the molecular dynamics method. Moreover, it is important to consider temperature effect, 
because thermal stresses could be effective to the motion of a dislocation. 

Therefore, in this paper, we analyzed temperature effect to the motion of a dislocation in nickel 
crystal by using newly proposed EAM (Embedded Atom Potential Method). We construct the 
cylindrical nickel crystal and put an a[-l 0 0] dislocation by deforming the position of atoms by the 
dislocation theory. Temperature and/or strain are loaded to this cylinder and MD (Molecular 
Dynamic) simulations have been done. a[-l 0 0] dislocation is separated toa/3[-l 0 0], a/6[-2-l -1] 
and a/6[-2 1 1] dislocations with 0[K]. When the temperature is applied, these dislocations moved 
along [1 1 1] and [-11 1] directions On the other hand, the dislocations moved along [1 -1 -1] and [- 
1 -1 -1] directions, when 1.6% uniaxial strain is applied along [1 0 0] direction in 0[K]. Above 
3O0[K], the movement of the dislocation occurs lower than the 1% strain. 

Key Words: Molecular Dynamic Method, Embedded Atom Method, Dislocation, Nickel Crystal, 
Missorientation, Temperature 

1.   Introduction 

Many efforts have been done to recognize a 
deformation of materials, and many atomic order 
investigations have been proceeded by experimental 
and computational methods. In order to study an 
atomic order deformation, it is important to have a 
method which can show structure of crystal. It is 
essential to use a potential, which can describe exactly 
defect energies such as the surface energy, when we 
proceed an atomic order simulation. On the other hand, 
it is well known that hydrogen effects to deformation 
of materials, and the computational simulations[l],[2] 
have been done. 

In this paper, we propose the method to show 
the atomic order structure of crystal, and analyzes the 
deformation of nickel crystal. In section 2, the two 
kinds of method are proposed to show the structure of 
crystal by using the missorientation technique[3]. In 
section 3, we proceed the molecular dynamic 
simulation of nickel crystal by using newry proposed 
EAM (Embedded Atom Potential Method) [2], which 
can describe a fault energy appropriately and simulate 
the interactions of hydrogen and dislocations exactly. 
Strain, hydrogen, and temperature effect to the motion 
of a dislocation in the nickel crystal are studied 

2.   Missorientation 

It is difficult to see movement of dislocations or 
structure of crystal. Figure 1 shows pictures of 
deformed atom positions of a nickel crystal with 30% 
strain displayed by 4 different kinds of method. Figure 

(d) Missorientation method 2. 

Fig. 1 Some methods to show position of atoms, 
(a) Ball, (b) Depfli. The color shows the depth of 
atoms from you. Brighter atom is nearer to you. (c) 
Missorientation method 1. The color shows the 
missorientation angle to the perfect fee cristaL (d) 
Missorientation method 2. The color shows the 
average missorientation angle between the atoms and 
the first nearest neighbor. 
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0 10 20 30 40 50 60 70deg 
Fig. 2 Miss orientation color depth. Brigtest atom 
shows 70 deg missorientation angl. 

;ioo] 

Fig. 3   Cylindrical Ni lattice model. 

1 (a) shows atoms as balls. It is realistic but difficult 
to detect lattice structure or dislocations. Figure 1 (b) 
shows atoms by circle and put color depend on depth 
of atoms. Bright color note the atom near to you. We 
can see some lines, but it is still difficult to detect 
lattice structure. We propose two kinds of method to 
show atoms by using missorientation technique[3] as 
follows. 
Method 1: Rotation angle of missorientation from 

perfect lattice. 
Method 2 : Average rotation angle of missorientation 

from first nearest neighbor. 
Figure 1 (c) and (d) shows atoms which are displayed 
by these two methods respectively. The relationship 
between color depth and angle is shown in Fig. 2. In 
Fig. 1 (c), we can see some different structures, but it 
is still difficult to get detail of them. In Fig. 1 (d), we 
can see clearly many sections in the crystal by dark 
color and boundary of these sections by bright color, 
since the atom which have same lattice orientation 
shown by dark and region, where the orientation is 
changing, is shown by brighter color. On the other 
hand, when we study movement of dislocation, it is 
convenient to show atoms by method 1 as shown in 
following sections, because almost all part have 
perfect or same lattice structure. 

3.   Simulation of Cylindrical Ni Lattice 

3.1    CYLINDRICAL MODEL 
We construct the cylindrical nickel crystal as 

shown in Fig. 3. The axis of the cylinder is [01 1] and 
the figure shows the surface normal to (0 J 1). The 
radius r is 50 A. Along the cylinder axis, we consider 

(a) 0 ps (a)' missorientation method 1 

(b)2ps (b)* missorientation method 1 

missorientation method I 

Fig. 4 Movement of a[l 0 0] dislocation by relaxing 
to T = 0 K. Shown by balls and the missorientation 
method 1. Dark color denotes lower deg and highest 
color denotes 70 deg. (a) The initial atom position 
with an a[J 0 0] dislocation, (b) The atom position 
after relaxed in 2 ps. afj 0 0] dislocation was started 
to move, (c) relaxed in 3 ps. (d) relaxed in 4 ps. The 
a[J 0 0] dislocation were separated to a/3[J 0 0] + 
a/6[2 i J] + a/6[2 1 1]. The position of dislocation are 
stable for more time. 

(c) 6n = 1.7% (d)eu = l.byo 

Fig. 5 Uniaxial stress is applied to the dislocation. 
Shown by the missorientation method 1. (a) The 
dislocations are stable before en = 1.5%. (b) At eu = 
1.6%, the dislocations started to move, (c) and (d) 
Dislocations are moved to along [-1 -1 -1] and [-11 1] 
direction. 

periodic conditions with the length of periodicity 
4.978 A, which contains 4 layers of atoms. The atoms 
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|c|cfo|o§ 

{point A] 

[point A and A'] 

[point U] 

[point AT 
Fig. 6   Positions where hydrogen atoms are putted. 
Small balls show hydrogen atoms. Upper pictures 
show atoms (011) surface and tilted 60 deg along 
upper direction of the paper. Lower pictures show 
projection to [0 1 1] axis and same color shows same 
plane.3.3   Hydrogen effects for a[l 0 0] dislocation 

in the region r = 44.35 to 50 A and r = 38.7 to44.35Ä 
are fixed to motion and temperature respectively. 

3.2 a[l 00] DISLOCATION at OK 
a[J 0 0] dislocation in the nickel crystal is made 

by deforming the positions of atom in order to the 
dislocation theory[4]. Figure 4(a) shows the applied 
a[l 0 0] dislocation. This dislocation were separated 
to a/3[J 0 0], a/6[2 i i] and a/6[2 1 1] as shown in Fig. 
4(b) to (c). Moreover, the missorientation angle of 
each atoms to the parfect crystal without dislocation is 
shown by colors in Fig. 4 (a)', (b)1, (c)' and (d)'. By 
this figures, separation of the dislocation is shown 
clearly. 

Uniaxial stress along [1 0 0] axis is applied by 
scaling the position of each atoms. Scaling were 
proceeded by step 0.1%strain along [1 0 0] and -0.1% 
x v ( = 0.0374) and relaxed lps for each steps. Figure 
5 shows the missorientation angle of atoms by the 
method 1. The high angle region of missorientation is 
started to move with 1.6% strain and changing 
directions. Finalry these regions are oriented to [111] 
and U 1 1] direction. 

3.3 HYDROGEN EFFECTS 
One or two hydrogen atoms are putted near the 

separated dislocation, which is obtained in section 3.1 
with 0  K and  relaxed few  pico seconds.  It  is 

(a) ei i = 0.8%    (b)£i i=0.9%      (c) en = 1.0% 

Fig. 7 One hydrogen in periodic position, that is two 
hydrogen atoms in two layers, are putted and applied 
strain with uniaxial condition along [1 0 0] axis. Small 
ball shows the hydrogen, (a) Dislocations are stable 
before en = 0.8 %. (b) Dislocations start moving at 
Ei i = 0.9 %. (c) Orientation of the dislocations are 
changed to [-1 -1 -1] and [-1 1 1] direction. 

Table 1   Relationship between the critical strain, 
where dislocation starts moving, and the placement of 

hydrogen atoms. 
point A A, A' U A' noH 
critical strain 0.9% 0.9% 12% 1.6% 1.6% 

Table 2   Relationship between the critical strain, 
where dislocation stars moving, and temperature. 
temperature [K] 0 100 300 500 
critical strain 8% 5% 1% 0.6% 

confirmed that the dislocation was not move by 
putting the hydrogen atoms. The positions, where 
hydrogen atoms are putted, are shown in Fig. 6. 
Figure 7 shows movement of the dislocation by 
applying strain with uniaxial stress condition. The 
dislocation starts moving at 0.9% strain, that is 0.7% 
lower than no hydrogen case. Table 1 shows the 
relationship between the critical strain, where 
dislocation stars moving, and the placement of 
hydrogen atoms. The lowest critical strain is obtained 
where the hydrogen is in the point A In every cases 
shown in Fig. 6, the dislocation moved as same as no 
hydrogen case. 

3.4   TEMPERATUE EFFECTS 
Temperature effects are consider to the 

movement of a[J 0 0] dislocation. Figures 8 shows the 
results with 100, 300 and 500 K. In all temperature, 
the dislocation separated along [1 1 1] and [1 1 1] 
directions with zero strain. This separations are 
different from 0 K case as shown inFig.4 (d). When 
we dropped temperature from 100 K to 0 K, this 
structure in Fig.8 (a) is stable and total energy is 0.5 
eV lower than the one of the structure with 0 K as 
shown in Fig. 4(d). 

We applied strain with uniaxial condition to 
these cases. For all temperature, the dislocation 
moved along [1 J J] and [11 J] directions, but the 
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(b)T = 300K,£11 = 0% (b)'eH = l% 

(c)T=500K,en = (c)'en = l% 

Fig. 8 Relaxed to (a) 100, (b) 300 and (c) 500 K, and applied (a)' 5%, (b)' 1% and (c)' 1% strain. Shown by the 
missorientation method 1. (a),(b) and (c) Separated all 0 0] dislocations in Fig. 3 (d) are moved for each temperatue. 
(a)\(b)' and (c)' the dislocations moved again along [1 -1 -1] and [-1 -1 -1] directions at 5%, 1% and 1% 
respectively. 

strain where the movement occurs are not same. Table 
2 shows the relationship between this critical strain 
and temperature. Above 300 K, the movement of the 
dislocation occurs lower than the 1% strain. 

5.   Conclusions 

The two method, which describe the atomic 
order structure, are proposed, and the deformation 
simulation of nickel lattice has been proceeded with 
many different conditions. The following are 
summary of conclusions. 

1 The missorientation angle is effective to 
consider structure of lattice. 
Hydrogen and  temperature reduce  the 
critical strain where the dislocation stars 
to move. 
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Solution of an elliptical rigid inclusion with debondings 
in an infinite plane under the uniform heat flux 
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A problem of an elliptical rigid inclusion in an infinite plane subjected to unifenn heat flux in 
an arbitrary direction and with n numbers of debonding on the interlace of the elliptical rigid 
inclusion and the elastic matrix is solved. The rotation of the inclusion under the uniform heat flux 
is considered. The complex variable method is used and the closed form solution is obtained. 
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1. Introduction 

Plane elastic boundary value problem can be 
roughly divided into three types; external force 
boundary value problem, displacement boundary value 
problem and mixed boundary value problem 
(displacement and external force boundaries exist 
simultaneously). In these boundary value problem, an 
infinite plane with a hole subjected to uniform heat 
flux hasbeen considered widely before. For the external 
force boundary value problem, Florence and Goodier 
considered an infinite plate with an Ovaloid hole [1]; 
Takeuchi et al. considered an infinite plate with a 
polygonal holeß], Sih studied an infinite plate with a 
crack [3]; Chao et al. considered an infinite plate with 
some circular crack on a circular line [4]; Hasebe et al. 
considered an infinite plate with a square hole[5] as well 
as a circular hole with a crack[6]. The general solution 
of an infinite plate with a rigid inclusion under the 
displacement boundary condition was derived by 
Hasebe et al. [7]. Sekine solved the line inclusion 
problem [8]. Furthermore, for the problem with mixed 
boundary condition, an infinite plate with a circular 
rigid inclusion with a crack was considered [9]. Kattis 
studied an arc-shaped inclusion and a straight line 
inclusion with debonding[10,l 1]. The above studies are 
all confined to the case that the number of external 
force and displacement boundaries is respective one. 
Compared with the problem to external force or 
displacement, the solution of the mixed boundary value 
problem with some segments of the external force and 
known displacement on the boundary has not been 
obtained so much before. 

The purpose of the present paper is to find the 
general solution of the mixed boundary value problem 
of an infinite plate with an elliptical rigid inclusion with 
n debondings around the interface. The problem is 
solved by the mapping function and thermal dislocation 
method, and the problem becomes a Riemann Hubert 

problem so that the complex stress functions can be 
found. The heat flux is assumed not to pass across the 
interface of the inclusion in the analysis. 

2. The method of analysis 

2.1 The mapping function 
Fig.l shows an infinite plate with an elliptical 

hole(z-plane) which is mapped outside of the unit 
circle( £ -plane) by the following mapping function: 

Z = coa)=E0£+Y (1) 

E„ = (a+b) 
E,= 

(a-b) 

where a and b denote the long and short radii of the 
ellipse. 

2.2 The solution under the uniform heat flux 
without rotation 

Fig.l shows an infinite plate with an elliptical 
rigid inclusion or the constraint of displacement, q 
represents the uniform heat flux through unit time and 
unit area with an angle Ö between the direction of 
the heat flux and the x-axis. The temperature and the 

Fig.l   z-plane and  £ -plane 
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heat flux canbe expressedby the mapping functionand 
the complex temperature function The complex 
temperature function is presented by [ 9 ] 

W(0- £o5e-i8 + -^ei5) %. 
% 

(2) 

where k is the thermal conductivity: Stress analysis 
under uniform heat flux without rotation of the rigid 
inclusion is carried out. Kg.1 shows the case thatthere 
exist debondings of n segments between the inclusion 
and the elastic matrix. The external forceboundaries by 
Lj(j=l,2,...,n), and the displacement boundaries are 
denoted by Mj(j=l,2,...,n). The coordinates of the 
both ends ofMj aredenotedby a j and ß j in orderof 
clockwise direction. The outside region of the unit 
circle is denoted by S+, and the inner region by S". 

The external fcrce boundary condition is expressed 
by the regular complex stress functions as follows [12] 

(o(a) —   — 

co'(a) 
onMjG=l,2,...,ri)      (3) 

where bar expresses conjugation of the complex 
function, Q is the constant which denotes the resultant 
force on Mj, and has a relation C1+C2+ • • • +Cn=0 
from equüibrium. 

The displacement boundary condition is [ 9 ] 

co'(a) 

= -2Ga';W©co'(S)d? 
on Li(j-1A...^) (4) 

The term in the right side of (4) denotes the 
displacement produced by the uniformheat flux, which 
is expressed by the complex temperature function and 
the first derivative of the mapping function. G is the 
shear modulus, vis the Poisson's ratio, and a is the 
coefficient of thermal expansion. For plane strain state, 
a' = ot(l + v), K=3-4V; for generalized plane 
stress state, cc' = a, K = (3-v)/(l+v). 

Without losing the general property, the external 
force and displacement on the boundary are zero in (3) 
and (4). In order to eliminate the dislocation of 
displacement of the right term in (4), the function with 
dislocation is introduced and the complex stress 
functions to be obtained are expressed by [ 9 ] 

*(9-*i(9 + fc(9     ,*ifc)«Alogt (5) 

¥tt) = *i(9 + iM5)  ,ih(9-BlogS        (6) 

Since the resultant force on the boundary must be zero, 
B = A can be obtained Substituting (5) and (6) into 
(4), A can then be determined by eliminating the 
dislocation of the displacement in the right side of (4): 

ctqRG. 
2k 

A = ' -E0(E0e*-E1e-a) (7) 

where R = (1 + v) /(l - v) for plane strain state, and 

R = (1 + v) for generalized plane stress state. 
By the principle of analytical continuation on the 

external force boundary, 'i1© is expressed by 

Tj)(c;) = -^(i/ö-s^-<t»'€) (8) 

Substituting (5),(6)and(7)into (3)and(4),theproblem 
is transformed into Riemann Hubert problem as: 

K<j>2
+(a) + 4>2-(c7) = H(a) 

(9) 

(10) 

-a + 
2a2 ) 

where + denotes that £ approaches the boundary of 
the unit circle from the out region S+, so does the signal 
— from the inner region S". The general solution to 
satisfy (9) and (10) simultaneously on the whole 
boundary can be expressed as: 

♦3ß>   *§■!£. 
Ci 

2rci j-i-^xfaXa-O 

H(o) 

-da 

+^i/Mi 
(ID 

da 
2m. j3JMJ x(a)(o - 0 

where X(£) is called Plemelj function, which is 

X(S)=n€-aj)
m€-ßj)

1-m (12) 

where m = 0.5 - i(lnK)/ 2n. The branching of 
xO/f = 1 is taken as £-»°°, and the following 
expressions hold, 

X+(P = X~G) onLj(j=l,2,-,n)    (13) 

onMJö=l,2,.-5n)    (14) 

The second term of (11) can be expressed by the 
integration around the boundary M( Mi+M2+ • • -+MO 
and is carried out by residue theorem The final 
expression of 4>(9 can be obtained from (5) and (6) as 

«Ö-Alog& 

^ccqRG^oV^ + ETElci5x'(0%-X(0X 
2k 

ctqRG 
2k 

X(£)n 

<EQ 

Xfi 

■2 

£ *-2    EQE^    1 
I     ^ 2      ? 

C 
da 

X(P)2V 

2mfrjL>x(o)(o-t) 
(15) 

where V in the second term of the right side is 
expressed as 

n=l; V = --K + ma1 + (l-m)fr} 

n=2;  V —1 

n^3; V- 0 
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The unknown constants Q(j=l,2,...,n) can be 
determined by the condition that the stress components 
at infinity must be zero, i.e., ^'C00) = ° .hi order to 
satisfy this condition, the coefficients of the order more 
than the first order of £ becomes zero. From this 
condition, n -1 numberofequauonsaboutCi,C2,...,Cn 
can be established, and combining these equationswith 
the condition thatthe resultant force must be zero, i.e., 
C1+C2+ • • • +Cn=0, Ci,C2, • • •, and Cn can be decided. 

In the expression of ¥X), there exists integral term, 
however, the first derivative of the integral can be 
expressed explicitly without integral term involving 
£ (see Appendix). 

2.3 The solution of the rigid inclusion with rotation 
If the inclusion under uniform heat flux is 

rotated, the rotation angle must be determined £ . It 
is taken positive in anti-clockwise direction about 
the origin The boundary conditions can be defined as 
px = py = 0 on L, and u = -sy, v = EX onMj, which 
are expressed as [12] 

4>+(o)-*-(a) = Dj 

K<j) *(a) + <|>"(o) = 2Gtek»(a) 

(16) 

(17) 

Dj(j=l,2,...,n) represents the resultant force on each 
Mj. The general solution that satisfies (16) and (17) 
can be obtained as 

«0- -S^ji 2ra j.iJLix(o)(c-ö 
-da 

a>(a) + 2Gdx(0|       
K    2m. i-i MJ x(CT)(° • •0 

-da 
(18) 

The integral of (18) on Mj can be carried out by line 
integration around the boundary M. Finally the 
complex stress function <)>(£) can be obtained as 

1+K 1+K 

da 
2miriJL'x(o)(a-0 

W in the first term on the right side of (19) is 

E, 

(19) 

n=l ; W=E0 + 
&(0) 

n^2; W E. 
MO) 

The unknown coefficients Dj(j=l,2,...,n) can be 
determined by the same method as that of the previous 
section. The another function n>(£) is expressed by (8). 

2.4 The resultant moment 
The resultant moment on the displacement 

boundary must be calculated to obtain therotation angle 
E . From (15) and (19), the complex stress function 

can be expressed as 

<Ko) = X(°X(°) + g(°) + e (°) (20) 

The resultant moment Mrot about the origin on the 
displacement boundary can then be expressed as [12] 

Mrot =-Re[fx(o)f(aK(l/o)-Tda 
_° (21) 

+ /e'(a)co(l/a)da] 

It is noted that e (a) denotes integral term in (15) 
and (19), f(a) denotes term with plemelj function 
(15) and (19), and g(a) is not related to the plemelj 
function, which does not appear in (21). The first 
derivative of e (a) is expressed without integral term 
(seeto Appendix) 

The solution of rigid inclusion rotating around the 
origin due to uniform heat flux from arbitrary 
direction is obtained by combining the solution of the 
inclusion without rotation and the solution of the 
inclusion with rotation under the condition that the 
resultant moment on the displacement boundary must 
be zero. In other words, the rotation angle of the 
inclusion can be determined by the condition that 
Mroti+Mrot2=0, where MlM is the resultant moment 
around the origin by making use of (15) in (21) and 
Mr«« is that by making use of (19) in (21). 

3. Conclusions 

Solutions (8) and (15) of the complex stress 
functions have been obtained for the case of the rigid 
elliptical inclusion with n number of segment of external 
force and displacement boundaries subjected to uniform 
heat flux in arbitrary direction and without rotation of 
the rigid inclusion Besides this, the complex stress 
functions with a rotation subjected to uniform heat flux 
can be derived by superposing the complex stress 
function (19) only to (15). The rotation angle can be 
decided by the condition that the summation of the 
resultant moment due to (15) and (19) must be 
vanished. 

Appendix 

The first derivative of the F<£) = x(D/a 

do 

x(°)(°-9 
The function is introduced 

-^r=-^fk-cOa-ßk)    (22) 
y(D   xß)k-i v > 

Multipling (22) by 1/(0-C) and the differential 
function by a is considered 

d   y-'(q) _ {y'W     y'V) 
doia-^      c-S   "(a-02 

(23) 

Multipling the both terms of (23) by da, and 
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integrating form a to b, the both sides in (23) is 
expressed 

the left side = 

ao  o-Z, a - c, 

b-Z      a-fc    gltg 

(24) 

the right side = 

= -f'©ne-akx?-ßk) k-1 

■&<£) 

where, 

raw; 

(25) 

X(a)(a-0 , fxo-j? X(°)(a-£)2 

g2<£) are the remaining term not including f(£) and 
f'(£)- f(ö and f'(9 include theintegral term by the 
following expression, 

i(k) = /^da   (k = 0,1,2,-...n) (26) 

Arranging (24) and (25), 

f'(O+H(0f© + G(g)-0 (27) 

where, 

n€-ak)ß-ßk) 
k-1 

Equation (27) is the first differential equation of f(£), 
and the solution is expressed, 

f (Oexptf H©d& + JO© exp{fH(S)d£}dt 

= const (28) 

Noting, 

exp{fH(£)d£>= xß) x const (29) 

and substituting (29) into (28), the derivative function 
is obtained as follows: 

ä£ft(Öf(ö>«-x(ÖG<ö (30) 

where {} in the left term of (30) is F(£)= x(£)f(S)- 
The final expression of the first derivative function by 
using (22) can be obtained as 

F'<£)--y©{g,<D + ga©} (31) 
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The steady state thermal stresses in an elastic thick plate containing a prolate spheroidal 

sliding inhomogeneity, when the circle region of radius d of the upper surface is heated and 

lower one is cooled, are investigated. The interface between the inclusion and the matrix allows 

sliding. The solution is deduced with using thermoelastic displacement potential and Boussinesq's 

displacement functions. Numerical examples are given. 

Key Words: Elasticity, Thermal stress, Thick plate, Inclusion, Steady state thermal stress 

1. Introduction 

New materials such as functionally gradient ma- 
terials and MMC have developed recently. Then 
the thermal stresses near the inclusions are im- 
portant for engineering design. In this paper, the 
steady state thermal stresses in an elastic thick 
plate containing a prolate spheroidal sliding inho- 
mogeneity, when the circle region of radius d of the 
upper surface is heated and lower one is cooled, 
are investigated. The interface between the inclu- 
sion and the matrix allows sliding. The solution is 
deduced with using thermoelastic displacement po- 
tential and Boussinesq's displacement potentials . 
The related three-dimensional thermal stress prob- 
lems of a spheroidal cavity or an inclusion em- 
bedded in a thick plate, were discussed in papers 
of Tsuchida and Nishikawa (1995)1', Tsuchida et. 
(1996)2), among others. Two sets of harmonic func- 
tions and two sets of biharmonic functions are given 
by simple expressions referring to cylindrical and 
prolate spheroidal coodinates. The boundary con- 
ditions on the surfaces of the thick plate and the in- 
clusion are satisfied by using the relations between 
cylindrical and prolate spheroidal harmonics and 
biharmonics. Numerical results are presented for 
different heat or cool area, stiffness ratios, inclu- 
sion shapes and sizes, and the stress distributions in 
the neighbourhood of the inclusion are illustrated 

graphically. 
2. Method of solution 
2.1 Temperature distribution and thermoe- 
lastic displacement potential 

Consider an elastic thick plate containing a pro- 
late spheroidal inhomogeneity as shown in Fig.l. 
Denote the cylindrical and prolate spheroidal coor- 
dinates by (r,6,z) and (a,/?,7) , respectively. They 
are related with each other by the equation 

r = cqp, 0 = 7, z = cqp (1) 
in which c is the half distance between a pair of foci 

(2) 

and 
q = cosh a, q = sinh a,    (q > 1) 

p = cosß,    p = sinß   (|p|<l) 
For convenience, r, z, q and q henceforce will 

be regarded as dimensionless quantities referring 
to a typical length of the half thickness of the thick 
plate. The major and minor semi-axes of the pro- 
late spheroidal inclusion are taken as b and a , 
where b = ccoshao,a = csinhao- 
The circular region of radius d of the upper surface 
of the thick plate is heated to constant tempera- 
ture To and lower one is cooled to —To 1 and other 
regions of surfaces are insulated. 

First, we obtain the temperature distribution. 
T is the temperature rise from the initial uniform 
temperature T = 0 . 

Fig.l Coordinate system 

Temperature distributions satisfy the Fourier 
heat conduction equation under steady state con- 
dition 

V-T = V2f = 0 (3) 
and satisfy the boundary condition: 

(i) On the surfaces of the thick plate c = ±1 

(T)„±, = 
±T0 

0 
(r<d) 

(r > d) 
(4) 
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(ii) On the interface of the inclusion a = ao 

(T)a=ao = (f)a=ao (5) 

.*©-.-'(©-. 
Here, k is the thermal conductivity . The quan- 
tities referring to the inclusion are denoted by a 
superior bar. We give the temperature functions 
as follows: 

+   ToJ2FmQ2m+i(q)P2m+i(p) (7) 
m=0 
J/«oo 

f    4>(X)J0(Xr) sinh Xz dX    (a > a0) 
o 

CO 

T   =   ro^„P2n+1(9)P2n+1(p)    (a<ao)  (8) 
n=0 

Here, Fm,Fn, <j>(X) are unknown coefficients and an 
unknown function , which are determined from the 
boundary conditions. Jn(Xr) is a Bessel function of 
the first kind and Pn(p),Qn{g) are Legendre func- 
tions of the first and second kinds respectively. 

First, we use the following formulae to satisfy 
the boundary conditions (i) on the surfaces of the 
thick plate. 

Qn{q)Pn{p) = e f    in(Xc)J0{Xr)e-XzdX  (z > 0) 
Jo 

Jroo 

'    in(Xc)Jo{Xr)eXzdX 
o 

(* < 0) (9) 
where, in(Xc) is 

in(Xc) = rnjn(iXc) = yCET/n+i(Ac) 

and i = \/—T. 
From the boundary conditions, unknown function 
4>(X) is found as follows. 

^) = -X>Fmi2m+1(Ac) 
m=0 

Next, in order to satisfy the boundary conditions 
(ii) of the inclusion, we use the following formulae 

oo 

Jo{Xr)coshXz = J^(4n+ fy2n(Xc)P2n{q)P2n(p) 
n=0 
oo 

Jo (Ar) sinh Az = ]T(4n + Z)i2n+i(Xc)P2„+i{q) 
n=0 

xP2n+l(p) (11) 
Satisfying the boundary condition (ii), we get 

^{FnQ2n+i(?o) + (4n + 3)(/cn + Jn)P2n+1(go)} 
n=0 

oo 

X      P2n+l(p) = ^2FnP2n+1{qQ)P2n + 1{p)       (12) 
n=0 

CO 

^{WwiW + (4n + 3)(/c„ + J„)P^n+1(?0)} 

X      P2n+l(p) =kJ2 £>P2n+l(?0)P2n+l(p)   (13) 
n=0 

Here, Sn, Kn are s»=d"J^hn+i {xc)dx       (i4) 

m=0 JO      e     - -1 

We obtain an infinite linear equation for Fn,Fn. 
Solving these equations, we get T and f. 
Next, we seek the particular solution of the ther- 
moelastic equation for the temperature function . 
As a particular solution for V2Q = T, V2Q = f, 
we give the following thermoelastic displacement ft 
and ft for T and f . where, ft and ft are thermoe- 
lastic displacement potentials for the matrix and 
the inclusion. 

ft   =   T0d 
f°° z cosh Xz 

I 2x^rxJ^J^dX 

Fmc2qp 
+   T°J2 2(4m + 3) W2m+2(?)P2m+2(p) 

-    Q2m{q)P2m{j>)} 
f°°  1 

+   To/     ^(A)J0(Ar)zcoshA*dA        (15) 

00 Ö     2 

X      {^2n+2(9)P2n+2(p) - P2n(?)ftn(P)} 
Here, V4ft = V4ft = 0. 

2.2. Displacement potentials 
The streeses caused by the above thermoelastic 

displacement potentials and temperature functions 
do not satisfy the boundary conditions on the sur- 
faces of the thick plate and the inclusion interface. 
Then we use Boussinesq's displacement potentials. 
Boussinesq displacement potentials for the torsion- 
less axisymmetric problem are given 

2Gur    =    ^°+Ä 
or or 

■2Guz    =    ^l + z
d^l- (3-4*0%        (16) 

The boundary conditions in the case of sliding in- 
clusion to be satisfied are : 

(i) On the surfaces of the thick plate z = ±1 

+ (*> 
\EeT0J2=± 

■ -w^-Afm^) 
x    AcoshAJo(Ar)<fA 

00 f°° 1 
-     ^2cFm        Xe-xi2m+1(Xc)Jo{Xr)dX}  (17) 

m=0 J° J 

n=0 UeToJ„±1 
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x    (coshA +AsinhA)Ji(Ar)dA 

+     E cF»> /°°(A - l)e"Ai2m+i(Ac) J!(Ar)dA l 

(ii) On the surface of the inclusion a = ao 

2Gua \ ( 2Güa \ 
= u„ 

EeT0hqJa=ao     \EeT0hq)a=c 

n=0        x ' 

+      T^^Fn+i + kKl(Kn-i + Sn-l) 
4n + 7 

+      ^(«n + <*n) + fc«s(*n+l + <*n+l)} 

£p(l + i/)c2      f    &K 
:Kl *«■ Vs2 

+    2(l-i>)(l + ^)14n-ir,i-1 + 4rH-3   " 

** «3 

V Selbe2*4 
or=ao VÄ£Toc2/iVa= 

= 0"„ 
a=cto 

oo 2 

= Eh— 
n=0 

in-2 + rFn-1 v 1 4n — 5 4n — 1 

4n + 3 4n + 7 4n+ll 

+     SK3(«n + ^n) + SK4(«n+l + ^n+l) 

.        r    ,,    £0(i + p)c2r 
+      5K5(Kn+2 + «Jn+2)}+(1_.)(1 + 2/) 

X      { „    K    r fi>-2 + 7-Fn-l + Z 7-zFn 4n-5 4n —1 4n + 3 

= T* 
\EeT0*h*qp) „        "aß 

-aa 

oo , 
*F2 

n=l      v ' 

4ra + 3 4n + 7 4n + ll 
+     *K1(K„_2 + ^n-2) +ijv2(«n-l + <$n-l) 

+     *«3(«n + <?n) + <K4(«n+l + <5n+l) 

+     *«s(Kn+3 + *n+2)}]J^«+l(p) 

(WcWfp,/^    -'ae 

= -E £0(i + p)c2r     txl  e 
riTi—E^-2 rJl2(l-P)(l + i/)l4n-5 

j.     _Jfr_P **3    g,       _*«i_p +    -; rr„_i + -——-rn + -——-rn+\ 
An — 1 471 + 3 4n + 7 

(iii) At infinity all stresses vanish. 

(18) 

Here, / denotes the differentiation . E is Young's 
modulus , v is Poisson's ratio,£ the coefficient of 
linear expansion and £0 = £"/£ is a ratio of coef- 
ficients of linear expansion, h is a local scale co- 

efficient h2 = -r—z 5--.   Sample coefficients of 
c2(?2_p2) 

kFi,   sFi, to(i=l~3,/=l~5)  are 

kFV= %£\{Q2M + qoQ'2M} (19) 
Here,   90   =   coshaoj   9o   =   sinha0,   hi   = 

., , -7.       To satisfy these boundary condi- 
c2(q2

0-p2) 
tions, we give the following harmonics for Boussi- 
nesq's displacement potentials <po, and ^3. 
For the matrix: 

P] (20) 

<po = EeT0 E AmQlm+l{q)P2m+l{p) 

00 

<p3 = EeTo J2 BmQ2m{q)P2m{p) 
m=0 

/•OO 

<Po = EeT0        tpi(\)Jo(\r)smh\z d\ 

MM V ^21) 
y>3 = ££.T0 /    AV»2(A)Jo(Ar) cosh A2: <fA 

For the inclusion: 

<p0 = EeTQ J2 ÄnP2n+i{q)P2n+i(p) 

[HI] n=l 

953 = ÄETO E BnP2n(q)P2n{p) 
(22) 

wherein, , 5m , (m = 0.1. • ■ •) , Ä, , Bn , (n = 
1,2, • • •) are unknown constants and V'i(A) , 1P2(A) 
are unknown functions of A, which are determined 
from the boundary conditions. The above displace- 
ment potentials satisfy the boundary conditions 
(iii) automatically. 

First, to satisfy the boundary conditions of the 
surfaces of the thick plate (i), we use the relation 
(9) and transform the displacement potentials [I] in 
the cylindrical coordinates and satisfy the bound- 
ary conditions. And the unknown functions V"i(A) 
and fa (A)  are found as follows: 

00 

^l(A) =  E C{^»"i2m+l(Ac)/i(A) 
m=0 

+   J5mi2m(Ac)/2(A) + -Fmi2m+i{\c)gi(X)} 
l-i/ 

dJi(Ad) 
A2 I  sinhA 

00 

+m (23) 

^z(A) = E c{j4n»i2m+l(Ac)/3(A) 

1 

2(1-1/)' 

m=0 

+     Smi2m(Ac)/4(A) + rm»2m+l (Ac) 

x    52(A)} 
1 

Here, 
2(l-I/)A2\linhr + ?,(A) (24) 

/i(A) = 
3 - 4r/ - 2A - e' ■2X 

sinh 2A - 2A 
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f (\\ = 4(l-t/)(l-2t/)-2A2 

J2K ' A(sinh2A-2A) 

/3(A) = 2 

/4(A) = 

sinh 2A - 2A 
3 - 4i/ + 2A + e~2A 

A(sinh2A-2A) 
(25) 

(l-v)(l-2A-e-2A) + A2 

m ;~ A2(sinh2A-2A) 
l-2A-e-2A 

521 '     A2(sinh2A-2A) 
Next, to satisfy the boundary conditions of the in- 
terface of the inclusion (ii), we use the Equation 
(11) and rewrite [II] 

ipo - EeTo ]P a„P2n+i(9)^+1 (p) 

[II]*-! "~ (26) 
<p3 = ^£To Y^ßnP->n{q)P2n{p) 

AOO 
where 

a„    =    (4n + 3) /    ^(AJtjn+^Ac) d\ 
Jo 

ßn   =   (4n + l)/   AV>2(A)i2n(Ac) dA (27) 

Deriving   the   stresses   and   displacements   from 
[I], [II]*, [III] , and satisfying the boundary condi- 
tions on the surface of the inclusion, we get 

00 

2_,[{*UlAi + kB1Bn + kßiBn+l + &al<*n 
n=0 

+      kßlßn + kß2ßn+l} 

-    ^{kAiÄn + kBlBn + kB2Bn+1}]P2n+i{p) 

=   K (28) 

^[{SAI-An-I + SA2An + SA3An+i 
n=0 

+ SßlBn-i +Sj52ßn + SB3Bn+l + SBiBn+2 

+ Saia„-.y + Sa2an + Sa3<Xn+l. + Sßißn-1 

+ Sßlßn + Sßzßn+l + Sß4ßn+2} 

- {SAlÄ~n-l + SA2Än + SA3Än+i 

+ SBlB„-l+SB2Bn 

+ SB3Bn+l + SB4Bn+2}]P2n+l (P) 

=     <T„ (29) 
00 

Y^{tAlAn-l+tA2An+tA3An+i 

+ tBlBn-l + tB2Bn + tB3Bn+l 

+ *B4-5n+2 + talOCn-l + t<x2<Xn + *a3<*n+l 

+ tßlßn-1 + tßißn + tßzßn+1 + tß4_ßn+2} 

x PL+i(p) = Kß (30) 

Y^i^lÄn-l + iA2Än+tA3Än+i 
n = l 

+   ißiBn-i +iß2Bn 

+     tj33Bn+l + tB4Bn+2}P2n+l[p) 

=     Kß 

Here, the sample coefficients are 

■i(9o) 

2n(2n + 1) 
kAi    =    <32n+i(9o) 

sAi    =    - {?1<32n-l(?0) (4n-l)(4n + l) 

+    ?oQ2„-i(?o)-(2n-l)Q2n_1(9o)}   (32) 
 r=o.5 

 r=2. o 

«a. 

05 

00 

-05 

-L0 

f* 0.5 

SL 

£■■2.0 
,b«0.8 
.    0.6 
.     0.4 
,    0.2 

b- 0.8v 

0-2s\ 

£t-0.5 
b-0.2 

0.6 

£1* 
b- 

2. 0 /// 
).4// 

0.8 

(31) 

0"      30-      OT     90-     120'     BO-     1HT 

4> 
Fig.2 Variation of <r,g with <j> on the surface of the 

inclusion , s=0.5, d=1.0   kjk = 1.0 51 
Here, T is T = G/G. T = 0 represents void, and 

T = oo is perfectly rigid. Equating the coefficients 
of P2n+i(p) and P^n+iip), in the left and right sides 
of equations (28)-(31), we obtain an infinite system 
of algebraic equations for An,Bn, Än and B„. 

3. Numerical results 
Numerical calculations were carried out for heat 

and cool regions radius d =0.5,1.0, 2.0 changing , 
values of the semi-axis b , the shape ratio s = a/6 
, stiffness ratio T = G/G and ratio of the thermal 
expansion coefficients £o = €/s• 

The variation of Cß with <j> on the surface of the 
inclusion for s=0.5, d=1.0 is shown in Fig.2. 
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An Extension of the Cowin & Nunziato }s 
Domain in Initially Stressed Bodies with Voids 

Marin Marin 

Math. Dep., Univ. ofBrasov, Str. L Maniu, 50, 2200 Brasov, Romania 

We prove that for a finite time t > 0, the displacement field «*, the 
dipolar displacement field <pjk> the temperature 6 and the change in 

volume fraction <r generate no disturbance outside a bounded domain. 

Key Words: Domain of influence, Initially stressed body, voids 

1. Introduction 
It is remarkable to note that the theory 

of materials with voids or vacuous pores was 
first proposed by Nunziato and Cowin [8]. In 
this theory the authors introduce an addi- 
tional degree of freedom in order to develope 
the mechanical behavior of a body in which 
the skeletal material is elastic and interstices 
are voids of material. The intended appli- 
cations of the theory are to geological mate- 
rials like rocks and soil and to manufactured 
porous materials. The linear theory of elastic 
materials with voids was developed by Cowin 
and Nunziato in [3]. Here the uniqueness and 
weak stability of solutions are also derived. 
Iesan in [4] has established the equations of 
thermoelasticity of materials with voids. An 
extension of these results to cover the theory 
of micropolar materials with voids was been 
made in our study [6]. In the present paper 
we first consider the basic equations and con- 
ditions of the mixed initial-boundary value 
problem in the context of thermoelasticity of 
initial stressed bodies with voids.   Next we 

define the domain of influence Bt of the data 
at time t associated with the problem. We 
adopt the method used in [l] and [5] to estab- 
lish a domain of influence theorem. The main 
result asserts that in the context of consid- 
ered theory, the solutions of the mixed initial- 
boundary value problem vanishes outside Bt, 
for a finite time t > 0. 

2. Basic equations 
The basic equations from thermoelasticity 

of initial stressed bodies with voids are, [7] 

fa + rnj)j + gFi = gui, 

Pijkj + Vjk + ujfiQik + (PkiQji - 
- <Pkr,iNijT + QMjk - IkrVjr, (l) 

h,i + g + QL = QKG,       (2) 
eToV - qi,i + er. (3) 

The equations (1) are the motion equa- 
tions, (2) is the balance of the equilibrated 
forces and (3) is the energy equation. We 
complete the above equations with 
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- the constitutive equations 

rv = uj*pki + Cijmnemn + Gmnij'ymn + 

+FmnrijXmnr + Oij<T + dijkVjc ~ OCij0, 

%' = -VjkQik + <Pjk,rNrik + 

+Gijmn£mn + Bijmnlfmn + hj& + 

+A/mnrXmnr + e^fctT,* — ßijd, 

Wi* = Ui»»--^ifft + FiikmnSmn + Dmmjklfmn + 

+<AijkmnTXmnr + CijkP + fijkmP,m — &jfc0> 

+/r»RrtXmnr + ^iC — O»0 + gij(?j, 

g = -Oijtij - bijfij - CijkXijk - 

-fr - ckcr,i + m$, 

5 = oijtij + fem + SijkXijk + 

+ma + aicrj + aß, 

« = Vrf-;      (4) 

- the kinetic relations 

Xijk = P>i*,,-, e = T-T<hc=<p-<p0.    (5) 

In the above equations we have used the 
following notations: g -the constant mass 
density; S-the specific entropy; 7o-the con- 
stant absolute temperature of the body in its 
reference state; /{/-coefficients of inertia; «- 
the equilibrated inertia; t^-the components 
of displacement vector; y^-the components 
of dipolar displacement tensor; <p-the volume 
distribution function which in the reference 
state is y>o; c-the change in volume fraction 
measured from the reference state; d-the tem- 
perature variation measured from the refer- 
ence temperature TQ; e„, ^/, x»;*-kinematic 
characteristics of the strain; 7V,>7y,/*i/*-the 
components of the stress tensors; A;-the com- 
ponents of the equhbrated stress vector; #- 
the components of the heat flux vector; F{- 
the components of the body forces; Afyfc-the 

components of the dipolar body forces; r- 
the heat supply per unit time; g-the intrin- 
sic equilibrated force; X-the extrinsic equi- 
librated body force; Cijmn,Biimn,...,kij-ihe 
characteristic functions of the material, and 
they obey the symmetry relations 

Otj = *ji> <k,k - djik, gij = gji 

Aijkmnr — Amnfijk, Fijkmn = Fijknm. 

"ijm» = (*ijnmi *»/ = «j»j P%j = Pj%.     (6) 

In (1) and (3) P&Qi, and Nijk are pre- 
scribed functions which satisfy the following 
equations 

(pij + Qii)j = 0, Nijkti + Qjk = 0. 

The entropy inequality implies 

MA- > o- (7) 

To the system of field equations (l)-(5) we 
adjoin the following initial conditions 

«.•(*,0) = u°i(x), ui(x,0) = u}(x)> 

*>*{*> 0) = <P%(*), <Pjk(z, 0) = <p}k(z), 

6(x,0) = e0(x),<r(x,0) = c0(x), 
cr(x, 0) = crx(«), x G B,   (8) 

and the following prescribed boundary con- 
ditions 

tu = ü, on dBx x I,ti = ü on dBl x I, 

Vj* = <Pjk on dB2 x /, pjk = ßjk on dBl* ^> 
a - ä on dB3 x /, k = k on dBl x ^ 

8 = 0<mdBiXl>q = qoTidBZxI,     (9) 

where U = (?y + j^-)^, ßjk = WiÄ^, /j = 
hin, q = qim, dBx,dB2,dB3 and 8BA with 
respective complements dB\,dB\,dB% and 
&B| are subsets of dB, I = [0,t0), m are 
the components of the unit outward normal 
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to dB, to is some instant that may be infi- 
nite, u^ uj, <p°jkL <p)k, 0°, a0, «r1, üi, ti, £,-*, 
ßjjc, c, 0, q and h are prescribed functions in 
their domains. 

Introducing (5) and (4) into equations (1), 
(2) and (3), we obtain the following system 
of equations 

QUi = [titfPki ~ VjkQik + <Pjk,rNrik + 

+(-Fm»ry + A/mrw )Xmnr + (ay + 6y)<7 + 

+(<*;* + eijk)<r,k - (an + ßij)0\j + gFiy 

IkrfijT — (Uj> Nirk + -Piyfennemn + 

i ■^'mnijkllmn  i    r-AyfcmnrXmnr T Cyfcff + 

+fijkm<F,m — 8ijk8),i ~ <PjiQki + 

+<Pji,rNrki + Gjkmn&mn + Bjkmnlfmn, + 

+i?;ÄmnrX«Mir + hfifl + ey*,-?,, — 

-ßjke + eMjki 

QKCT — (Omiu'£mn T fironfTmn. T 

+/mn»X»n»T + <£<7 + ^(Tj - 0*0),; + 

+0l - -OijCij - bijfij - CijkXijk - 

-fff — dicrti + md, 

(10) 

QIQ Jo 

-aijiij - SijkXijk -ma- <*&,>.   (11) 

By a solution of the mixed initial boundary 
value problem of the theory of thermoelastic- 
ity of initial stressed bodies with voids in the 
cylinder fio = B x [0, to) we mean an ordered 
array (u;, tpj%t 6, a) which satisfies the system 
(11) for all (x,t) € Ho, the boundary condi- 
tions (9) and the intial conditions (8). 

3. Main result 
We begin this section with the definition 

of the domain of influence. Next, we estab- 
lish a domain of influence inequality, which 

is a conterpart of the inequality established 
in [5]. Finally, we shall prove a domain in- 
fluence theorem in the context of thermoe- 
lasticity of initial stressed bodies with voids. 
In all what follows we shall use the following 
assumptions on the material properties 

0    e > 0, Iij > 0, « > 0, To > 0, a > 0; 

TX>tj'mjiy»/2/m»t T 2*,mnTija:ijzmnr T 
T"UijmmryijZmnT T Aij](m,nTZij]fZwnT-r 

+PkiXj}tXji - 2QikXjiyjk + NTikXjiZjkr+ 
+2aijXijU> + 2bijyijU> + 2cijkZijjtU>+ 
+2dijkXijU>k + 2eijkyi}-wk + 2fijkmzijkWm+ 
+2diWiU> + £u? + gijWiWj > 
> oe(xi3-Xij + yijyij + ZijkZijk + WM + w2), 
V Xij = Xjit yij, Zijh, tüi, ui\ 

Hi)   Ä*y6f/>7&&>   V&- 
These assumptions are in agreement with 

the usual restrictions imposed in the mechan- 
ics of continua. The assumption ttt) repre- 
sent a considerable straightening of the con- 
sequence (7) of the entropy production in- 
equality. 

Let U(x, s) be the function defined as 

Hx> s) = 2^^ + hrVjrVfr + 2™? + 

TflP   T ^ijmnEij£mn. + 2G,iy„iB£ij7rMl + 

~i~-&ijmn'Yij'Ym,n T ^■fmnrii^ijXmnT T 

"T2JJijmnr fijXmnr T ■Aijkm.nrXijkXmnr "r 

PkiUj^Ujti - 2QiJeUjii<pjk + 2oij<reij + 

+2JVrifcU;l{p<,-fcir + 2bije*iij + 2cijk<TXijk + 
+2dijjtaji€ij + 2&ijitayiij + 2<4o"ff,i + 

+ 2fijkm<r,mXijk + gijffjPj +1<^\-   (12) 

We also define the function K(x, s) 

+QK&2 + aS2 + SijBij + VW + 

+ XijkXijk + o-2 + <wK*) s). (13) 

139 



Taking into account the assumptions »)   (8) x € dBz => 3r e [0,t] such that 6? 0, 
and xt), from (12) and (13) we deduce (9) x € &B| => 3r € [0, t] such that q ± 0. 

»-,     v ^ „r     v , The domain of influence of the data at in- 
*(*»«) <?(*,*)• (14)   stant £ is defined as 

The next theorem is a necessary step to Bt = {x0 £ B : 5(i) n S(zo, et) # 01,  (16) 
prove the main result. 

where 0 is the empty set. 
Theorem 1. lei (ui,ip3k,6,cr) be a solution 
to the system of equations (11) with the ini- Theorem 2. Let {ui,<pjk>9,<T) be a solution 
tial conditions (8) and the boundary condi- to the system of equations (11) with the ini- 
tions (9).   Then for any R > 0,t > 0 and tial conditions (8) and the boundary condi- 
Xo € By we have that tions (9). Then we have 

[       V(x,t)aY + ± f \wjV Ui = °> ^ = °' * = °> * = °> 
JDI*SJCI ToJ0 Jn f5.D,    .    T 

rt t on{B\Bt}x[Q)t]. 

-lie (*& + MiWjk + Lir) ^^ + 

+£lx*»*+la "<**>*+ References 
ft  t   _ °* (*) Carbonaro,B., Russo,R., 3. Elasticity, 

+ fain + fijk<Pjk + her)dSds + 14, p.163, 1984 
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+ f f  —0\dSds,(15)   ® Cha,ldra8dcharaMk> DS-, J. Elasticity, 
Jo Jon ^o ' 18) p. 173, 1987 
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Based on the above estimations, we can   (4) Iesan, D., J. Elasticity, 15, p.215,1985 
now prove the mam result of our study : the 
domain of influence theorem. (5) Ig^^, 2.t Carbonaro, B., 

Let B{t) be the set of points x € B such J. Thermal Stresses, 9, p.79, 1986 
that: 

riv     _ D        0   , „        .   , n (6) Marin, M., C. R. Acad. Sei. Paris, 
(1) x 6 B =► u| # 0 « «J # 0 or »4 5* 0 t. 231, 5erie II b, p.475, 1995 
or 9jh ? 0 or <r° # 0 or a1 £ 0 or 0° # 0 or 
3r € [0,<] such that JJ ± 0 or 1$» * 0 or   (7) Marin, M., Int. J. Engng. Sei., 

ft     Yrf°; 8, p.1229, 1994 
(2) x € dBx =» 3r 6 [0, <] such that Ü,- # 0, 

S * I lBJ * lT e M ""* that * * °'      <8> Nun^to, J.W, Cowin, S.C., Arch. Rat 
(4) s £ d^2 =j. 3r € [0, t] such that £,* # 0, JlfecA. Ana/., 72, p.175, 1979 
(5) x € dBl =► 3r G [0, *j such that /*,-* ,6 0, 
(6) a 6 dß2 =*► 3r € [0, i] such that ä ^ 0, 
(7) z 6 dBl =» 3r 6 [0, t] such that Ä ^ 0, 
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Effects of Specimen Sizes and Cooling Media on the Thermal Fatigue Crack Growth 
Behavior due to Improved Quench Tests. 

S. Ishihara*, T. Goshima*, T. Yoshimoto** and K. Nomura* 

*Department ofMechanicalEngineering, Toyama University, 3190Gofitht, Toyama 930, JAPAN. 
**Fujikoshi Cooperation, Ishigane, Toyama 930, JAPAN. 

In this study, an improved quench testing method for a thermal shock resistance has been proposed 
Repeated thermal shock tests -were performed on cemented carbides to show the advantages of the new proposed 
method that enable us to estimate an intrinsic relationship between crack propagation rate and stress intensity 
factor, and the values offracture toughness under the repeated thermal shocks. It was successfully shown that the 
cyclic thermal fatigue crack propagation behavior and frarturetcwghness values were irefepenck^ 
heights and the cooling media employed 

Key Words: Fatigue, Thermal Shock, Crack Propagation, Size Effect, Quenching Media, Cemented Carbides, 
Microstructure 

1.   Introduction 

The quench tests [l]-[2] have been employed to 
evaluate the thermal shock resistance of the materials. In 
these tests, the critical temperatures Tc at which bending 
strengths after thermal shock drop abruptly due to 
initiations of thermal cracks is used as a scale of thermal 
shock resistance. The quench test has an advantage of 
being easily conducted at everywhere, but has a disadvantage 
of absence of the physical meaning in the parameter Tc. 
For examples, changes in the specimen sizes, specimen 
shapes and cooling media yield the different values of Tc, 
even if the same material would be tested Therefore, it is 
impossible to obtain reliable Tc values, and also the 
quantitative relationship between subcritical crack growth 
rate and stress intensity factor under the repeated thermal 
shock tests. 

' In this study, an improved quench method for thermal 
shock experiments has been proposed Repeated thermal 
shock tests by the new method were performed on cemented 
carbides to confirm that the cyclic thermal fatigue crack 
propagation behavior and fracture toughness values are 
independent of the specimen heights and cooling media with 
two different coefficient of kinematic viscosity. 

shape and dimensions are shown in Fig. 1. Two kinds of 
specimen. 8x4x25. 16x4x25 were prepared for the tests. 
All specimens were polished with diamond paste to the 
mirror-like finish prior to the tests. The mechanical 
properties after sintering are listed in Table 2. The values 
of fracture toughness are estimated as 12.7 MPaVm by 
bridge indentation method 

Table 1   Chemical compositions of the material used 
Wt(%) 

wc TiC TaC NbC Co 
72 8 8 2 10 

yf 

25 
^v 

25 

2.   Specimen and experimental procedures 

2.1   SPECIMEN 
The material tested was cemented carbides with 8.5 

ß m WC grain size. Their chemical compositions are 
listed in Table 1. As seen from this table, the main 
compositions are WC. TiC and TaC.   The final specimen 

Fig.1   The shapes and dimensions of the specimens 

Table 2   Mechanical properties of material. 
Coefficient of linear expansion 5.34x10-* 

Young's modulus (GPa) 527.24 
Poisson'tnodulus 0.222 

KIC (MPam"2) 12.7 
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2.2 EXPERIMENTALMETHODS 
2.2.1. Measurement of temperature distributions. All 
surfaces of the specimen but the bottoms were coated with a 
silicon resin to provide them with adiabatic boundary 
conditions. The surface without coating was planned to 
contact with the cooling media The specimens were 
heated in the furnace at any temperatures for 20 minutes. 
Then the specimens were dropped down to contact with the 
cooling media of 293 K. and left at this condition for 5 
minutes. Water and silicon oil were used for the cooling 
media in the present study. Their coefficient of kinematic 
viscosity are O.SSbcKTW/s and 5xWSi?/s, respectively. 

The repeated thermal shock tests were conducted using 
a timer-controlled motor that can lift or down the specimen 
between the fiimace and the cooling media, as shown in 
Fig.2. From the preliminary experiments, temperature 
variations in the longitudinal and wide direction of the 
specimen were confirmed as a little. So, we can assume 
that only one dimensional temperature gradient is yielding in 
the specimen height Measurements of temperature 
gradient along the specimen height were done by using the 
five Alumel-Chromel thermocouples with 02 mm diameter. 
These were attached to the specimen side at the distances 0, 
1.2,4 and 8 mm for the 8 mm height specimens, and 0,1.2, 
4 and 16 mm for the 16 mm height specimens from the 
cooled surface (bottom of the specimen). Figure 3 indicates 
these situations. The temperature measurements were done 
five times at the constant heating temperature. The 
averaged temperature distributions were used for the 
calculations of the dynamic thermal stresses induced during 
UK thermal shock test 

1 Motor 
2 Timer 
3 Furnace 

4 Specimen 
5 Water or Silicon oil 

Rg.2   A schematic illustration of the thermal shock testing 
equipment 

Thermo couples 

t    t .  "t     t    t 
Thermal shock 

Fig.3 The locations of thermocouples attached to the 
specimen to measure the temperature distribution in the 
specimen height during the thermal shock 

2.2.2    Analysis of thermal stresses. When the 
temperature gradient does not occur in the longitudinal and 
transverse directions of the specimen but c^m the direction 
of the specimen height thermal stresses can be evaluated by 
the following expression [3], 

+i^tv)CaEr('^)y^   (') 

where, a, E, v denote coefficient of linear expansion. 
Young's modulus and Poisson's ratio of the material, 
respectively. In addition, 2c indicates the specimen height, 
and rdenotes the temperature gradient In this calculation, 
the variations of the thermal and mechanical properties with 
temperature were expected as a little, so the averaged values 
in the temperature's range were employed for the calcu- 
lations. The nurnerical integral method was used for the 
calculation of the above expression. 

2.2.3 Crack growth behavior during the repeated thermal 
diocktest Precrack was introduced at the center of the 
specimenbythermdgeirdentationmethod Theirlengths 
wererangedfioml00tol50 n m. The specimen surfaces 
amtaining the indentation were polished and eLuninated 
about 40 p m to remove the effect of residual stresses 
induced by the bridging indentation Crack length during 
fatigue process was measured by an optical microscope at 
magnification of 400-1000 by interrupting the test at the 
specified number of cycles. The relationship between 
da/dN-K^. was obtained from the observed crack growth 
curve 2a-N. Newmann-Raju expression [4] for surface 
crack in bending was employed in the calculation of K^. 
The crack shapes for the surface cracks were investigated to 
be b/a= 0.74. where * and a denote a crack depth and a half 
crack length, respectively. 

3.   Experimental Results 

3.1 TEMPERATURE   DISTRIBUTION   IN   THE 
SPECIMEN DUE TO THERMAL SHOCK 

Figure 4 show the temperature distribution in the 
direction of the specimen height at the elapsed time of 0.5 
sec. The data was obtained for the case of heating 
temperature of 523 K. From Figure 4, a small difference 
can be seen between 8 and 16 mm height specimens in (he 
temperature distributions, though sudden temperature 
changes near the cooled specimen surface due to thermal 
shock are commonly seen for both specimens. Ontheother 
hand, the temperature in silicon oil changes more slowly in 
the direction of specimen height and with time than in water. 

3.2 DYNAMIC THERMAL STRESSES 
The experimentally obtained temperature distributions 

were substituted into Equation (1) to calculate the dynamic 
thermal stresses induced in the specimen at the instance of 
the thermal shock 
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Figure 5 shows the variations of the thermal stresses 
with the distance from the cooled surface forseveral elapsed 
times. Hiis figure indicates the data for heating 
temperature of 523 K, specimen size 8x4x25 mm. As a 
cooling media, water was employed We can see that the 
maximum thermal stresses always yield at the cooled 
specimen surface, and they are in tension. These 
tendencies are common to other experimental conditions. 

Figure 6 show the changes of the thermal stresses, 
c „oi- that yield at the cooled specimen surface as a function 

of time for the case of the heating temperature of 523 K. 
We can see that the maximum thermal stresses yield at the 
elapsed time of 0.5 second for both 8 and 16 mm heights 
specimens, but the absolute values of the thermal stresses 
differ with the specimen height, that is, the value for the 16 
mm height specimen is 1.3 times larger than that for the 8 
mm height specimen. In addition, we can see a different 
behavior between water and silicon oil in the variations of 
the thermal stresses. The maximum stresses er m for 
water yield at 0.5 sec, and the value is 470 MPa, while for 
silicon oil. it occurs at 6 sec and tlie value is 160MPa So, 
wenoticethat a „„, induced at thermal shock for silicon oil 
is only 0.34 times of those for water, and change very slowly 
as compared with that for water. 

Figure 7 shows the variations of the maximum thermal 
stresses ^ ^ as a foiKtion of ÜKlieatmg temperature 2^. 
of die specimen.   As seen from this figure, die positive 

550 

ä 
Jmm=52XK) 
t=0.5(sec) 
In water 
•  Height 8mm 
O Height 16mm 

In silicon oil 
A Height 16mm 

0        0.004     0.008     0.012     0.016 
Distance from the cooled surface y (m ) 

Fig.4 The effects of specimen heights and the cooling 
media on the temperature distributions in the direction of the 
specimen height 

400 

-too 

0 0.002       0.004       0.006       0.008 
Distance from the cooled surface y (m) 

Fig.5 Distnl3utRnisoftiietheniial stresses m the specimen 
induced by tlie thermal shock near the cooled surface with 
time. 

linear relationships can be seen between a „„ and Tm. 
At a constant Ttm, the maximum thermal stresses for 16 mm 
height specimen are larger than those for tlie 8 mm height 
specimen, though the slopes for both relations are almost 
same. On the other hand, the slope of tlie linear 
relationship in silicon oil is somewhat lower than in water. 

3.3 CYCLIC CRACK GROWTH BEHAVIOR IN THE 
REPEATED THERMAL SHOCK TESTS 

Figure 8 shows the relationship between crack growth 
rate, da/dN and stress intensity factor. &«, plotted on 
logarithmic paper under the repeated thermal shock tests for 
both 8 and 16 mm height specimens. In tlie tests, water 
was used as a cooling media As seen from this figure, 
there is linear relationships between </<y<aP/and £„,, for both 
specimens, and no differences exist between them As 
stated above, since there is no specimen size dependence on 
the relationships between da/dN and K^ we can realize the 
effectiveness of the present method to get tlie crack growth 
behavior under the repeated thermal shock 

Figure 9 shows the effect of the cooling media on the 
relationships between da/dN and Km, under the repeated 
thermal shock In the tests, the specimens with size of 
16x4x25 mm were used As seen from this figure, there is 
a linear relationship between da/dN and K^, on the log-log 
plot In addition, the relationships are independent of the 
cooling media employed This fact indicates that even if 
the thermal boundary conditions between tlie specimen 

In water 
• Height 8mm 
O Height 16mm 

In silicon oil 
A Heieht 16mm 

0.1 0.5   1 5    10 
Time t(sec) 

50 100 

Fig.6   Variations of the thermal stresses  a ^ at the 
cooled specimen's surface with elapsed time. 

a. 1000 
2 
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2 600 

E 400 
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3 
E 

In water 
• Height 8mm 
O Height 16mm 

In silicon oil 
A Heieht 16mm 

i      .     i 

T
 

1 
1 

1 
1 

1 
 

400 500   600 
Temperature T, 

700 800 

Fig.7 Changes of tlie maximum dynamic thermal stresses 
during tlie thermal shock as a function of tlie heating 
temperatures of the specimens. 
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surface and cooling media would be unexpected, we can 
evaluate the exact thermal stresses that yield along the cooled 
specimen surface by using the present method. 

By applying the least square method to Fig. 8 and Fig. 9. 
we get the following intrinsic relationship between da/dN 
and Kma. that is independent of the specimen size and the 
cooling media. 

da/dN=2.02xW~'(Kmirt-33)] 156 
(2) 

3.4   ESIM\TO<r(TlIBM^FRACnJRETaUGHNESS 
IMERTHERMALSHXKQDrCCTlON 

The heated temperatures of the specimen at which the 
precracks begin to propagate more than 100 ß mbyasingle 
thermal shock were investigated. By substituting these 
temperatures into Fig.7, we can calculate the dynamic 
thermal stresses and evaluate thermal fiacture toughness 
values Kjc using Newmann-Raju expression for surface 
crack in bending. The values of ATr are listed in Table 3. 
As seen from this Table, the average fiacture toughness 
values are estimated as 10.7 MPam"2 for the 

io-5 

io- 

jo-7  -= 

i  i i i i a 

2 
1 

io-s 

10-' 

The repeated thermal shock 
in water 

• Height 8mm 
O      Height 16mm 

l   I   i i i 

Kn^MPam"2) 

Fig.8    Effect of specimen heights on the relationship 
da/dN-Kna, for the repeated thermal shock tests. 
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with height 16mm 
• In water 
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Fig.9   Effect of quenching media on the relationship da/dN- 
Km for the repeated thermal shock tests. 

specimens of 8 mm height, and 9.8 MPam"2 for the 
specimens of 16 mm. Though the value for the former is 
somewhat higher than for the latter, they are considered to be 
almost same. But these estimated values are smaller than 
those by Vickers-indentation method listed in Table 2. One 
of the reason for this difference is expected to come from 
oxidization of the specimen under high temperature, but the 
details of the mechanisms are unclear at the present. 

Table 3 The values of fiacture toughness obtained by the 
present method. 
(a) Specimen height 8mm 

TC(K) a . (MPa) 2a (/tm) K,c (MPam"') 
586 479.14 836 10.98 
607 526.39 358.175 7.83 
613 539.89 538.175 9.86 
685 701.89 710 14.77 
699 733.393 306.35 10.1 

Aver. 10.71 
(b) Specimen height 16mm 

T«(K) o,™ (MPa) 2a (n m) K1C (MPam'") 
586 705.2 321.3 9.97 
633 861.05 162.8 8.66 
648 910.76 230.45 10.9 

Aver. 9.84 

4. Conclusions 

The following results were reached from the present 
study. 
(1) The relationships between da/dN and stress intensity 
factor Kma and the values of fiacture toughness under the 
repeated thermal shocks were studied using the new testing 
method. We (XHifirmed that the relationships are 
independent of specimen sizes and the cooling media 
employed. The    following    intrinsic    expression. 
<fo/<^2.02xlO-7(A^r-3.3)liB, was obtained for cemented 
carbides. 
(2)The values of fracture toughness investigated by the 
present method are independent of specimen sizes, but are 
lower as compared with those estimated by bridging 
indentation method One of the reason for this, an 
oxidization of the specimen under high temperature 
environment is expected. 
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Crack Propagation in a Functionally Graded Material Plate 
under Thermal Loading 
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Functionally graded materials (FGMs) have been developed as uhrahigh heat resisting materials in 
aircraft, space engineering, and nuclear fields. The formation and propagation of cracks in the FGM 
under severe thermal loading is often unavoidable. The crack path in an FGM plate under thermal load- 
ing tends to be straight or curvilinear. It is important to predict how the crack propagates on various 
conditions. In this paper, by use of mode I, modell stress intensity factors and the maximum stress 
criterion, two-dimensional crack propagation in the FGM plate under thermal loading is studied by 
means of FEM. 

Key Words : Functionally graded materials, Mode I and mode II stress intensity factors, Kinded crack, 
Curviliner crack path, Finite element method 

1. Introduction 

Functionally graded materials (FGMs) have been 
developed as uhrahigh heat resisting materials in air- 
craft, space engineering, and nuclear fields. The appli- 
cation of FGMs in an extreme environment requires 
strength against thermal and mechanical loading. FGMs 
are composed of two quite different materials; engineer- 
ing ceramics and light metal. The former is to resist se- 
vere thermal loading in a high temperature environment, 
and the latter is to maintain the structural rigidity. Ther- 
mal stress may produce cracks in FGMs which are sub- 
jected to extremely high thermal loading. Thermal 
stresses in the FGMs are deeply dependent on a compo- 
sition rate of ceramics/metal and the thermal conditions. 
A suitable composition rate may prevent fractures. There- 
fore, it's important to study the FGMs from a view point 
of the fracture mechanics. 

Thermal cracking problems have been investigated 
by many authors. Jin and Noda [1] investigated the steady 
thermal stress intensity factor of the functionally graded 
semi-infinite space with an edge crack subjected to ther- 
mal loading. Jin and Batra [2] studied the transient ther- 
mal stress intensity factor of functionally graded plate 
with an edge crack subjected to thermal shock. Thermal 
stresses may produce the straight or curvilinear crack. 
Bahr and Weiss et al. [3,4] studied morphological tran- 
sitions between single and multiple straight and oscilla- 
tory crack propagation in the homogeneous material. 
Herrmann et al. [5,6] investigated curvilinear thermal 
cracks in bimaterials or fibrous composites. Hibino et 
al. [7] experimentally observed the straight and 
curvelmear crack in functionally graded disk under ther- 
mal loading. Gu and Asaro [8] studied kink directions 
for several specimens which may be used to experimen- 
tally study fracture behavior of functionally graded ma- 
terials. 

In this investigation, we study the crack path in 
the FGM plate how to depend on an initial crack and 
thermal conditions. The crack propagation in the FGM 
plate under thermal loading is simulated to predict the 
crack path. Mode I and mode TJ thermal stress intensity 
factors and a fracture angle near a crack tip in the FGM 
plate are considered. Mode I and mode n stress inten- 
sity factors are obtained by solving the thermoelastic 
problem for plane strain case by means of the FEM. The 
crack propagation is investigated by use of the maxi- 
mum stress criterion [9]. The straight and curviliner crack 
paths are simulated. 

2. Analysis 

We consider crack propagation in an FGM plate 
as shown in Figure 1. The FGM plate is composed of 
the ceramics (PSZ) and the metal (Ti-6A1-4V). The FGM 
plate has an initial crack on the ceramics boundary which 
is subjected to thermal loading. The initial crack is com- 
posed of a main crack of length a2 and a kinked crack of 
length ay After the main crack propagates directly per- 
pendicular to the surface of FGM plate, the kinked crack 
occurs with an angle of a0 due to including impurities, 
particles, or any other reasons. 

The FGM plate is suddenly heated from the initial 
temperature T0 to the boundary temperature TH on the 
ceramics surface and to the boundary temperature TL on 
the metal surface. After the steady state is achieved, the 
FGM plate is suddenly cooled to the initial temperature 
T0 on the both ceramics and metal surface, or is cooled 
by heat transfer which is chracterized by the heat trans- 
fer coefficient h and the exterior temperature TB on the 
ceramics surface. 

The FGM plate with porosity is made by the con- 
tinuously graded profile of the composition with change 
from the ceramics (PSZ) to the metal (Ti-6A1-4V). The 
volumetric ratio of the metal V and the porosity P are 
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100%- PSZ-e 

0%-2*Ti-6Al-4V-^100% 
vii 

0 b X 
Figure 1 Model of functionally graded material plate 

with an initial crack 

taken as: 

Mir -40H0]   « 
where 

and m, n, k are arbitrary constants, b denotes a thickness 
of the FGM plate. For the material properties of the ce- 
ramics and the metal, those of experimental data [10, 
11] are used. We apply the material properties of the 
FGM which expressed [12,13] as : 

£ = ■ m-p) 
l+P(5 + v0X37 - 8v0) / 8(1 + v0)(23 + 8v0) 

a = a0 v=v0 p = p0(l - P) + pJP 

C = {C0p^l-P) + CaPeP} (2) 

where X,E, a, v, p, and C stand for the thermal conduc- 
tivity, the Young's modulus, the linear thermal expan- 
sion coefficient, the Poisson's ratio, the mass density, 
and the specific heat, respectively, and 

^0 = ^1 + 
3(^-^)Fw 

<3*c + ttm-*&-Vj> 

E..B,    E^m-Ec)V^ 

Ec+iEm.EM/3-ym) 

<*0 
_ amKEm I (1 - yj + all - Ve)Ec I (1 - vc) 

^/(l-vJ + Cl-Fj^/Cl-vJ 

vo = vmVm + vcVc Po = PmVm+PcVc 

Cn = 
CmpmVm + CcPeVe 

(3) PmK+PcK 

in which subscripts m, c, and a represent the metal, the 
ceramics, and the air, respectively. We assume that the 
material properties are independent of temperature. 

Coordinate system near the crack tip is given in 
Figure 2. The angle a0 represents the initial kink angle. 
The fracture direction makes the angle 8C with the axis 
X' representing a normal direction on the crack tip. The 
crack tends to propagate in curves with the fracture angle 
ec being taken the positive. It tends to arrange itself to 
propagate perpendiculer to the plate. 

Y'K [Fracture direction J 

Figure 2 Coordinate systems near the crack tip and the 
fracture angle dc 

We use the following criterion [9] for the crack 
propagation. On the X'-Y' plane, the criteria can be writ- 
ten as follows: 

(a) The crack propagates perpendiculer to the direction 
of greatest tension. 

Kpine + KjlScose -1) = 0 (4) 

(b) The crack propagates when the mixed mode (mode 
I and mode II) stress intensity factor K exceeds the 
fracture toughness KJc. 

K (= cos^KjCos^ - ^Kjjsine]) *KIc (5) 

where the angle e„ stands for the direction along which 
the hoop stress a$, is maximum and the shear stress r 
, is zero on the X'-Y' plane. The fracture toughness Kk 

of the FGM plate is dependent on the position as fol- 
lows : 

KIc = VmKm + (l.Vm)Kcl (6) 

where Km and Ka represent the fracture toughness of 
metal and ceramics, respectively. The angle eo is found 
from the mode I and mode II stress intensity factors (Kp 

KJI) ty equation (4). The mixed mode stress intensity 
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factor Kcan be obtained ixam.Kp Kp and 80 by equation 
(5). 

Normalized stress intensity factors IT, Kf, and Kn' 
can be defined as stress intensity factors K, Kp and Kn 

which are normalized by the fracture toughness KId> re- 
spectively. Figure 3 shows typical relations among nor- 
malized stress intensity factors (K*, K*, and Kn*), the 
angle 60 and cooling time. The variation of Kj is larger 
than that of Kn' with the cooling time. When Kf is in the 
negative, the crack is closed by a compressive stress. 
The time when Ka' takes into the positive is later than 
that of Kj. The normalized stress intensity factor of 
mixed mode K" and the angle e0 are solved from K* and 
Kn* by equations (3) and (4). It is found by equations (3) 
and (4) that the angle B0 is decided by a ratio of K* to 
Kn'; the angle 80 takes the positive when Ka* is in the 
negative. r; denotes the time when JT has reached the 
fracture toughness K^. When the cooling time has 
reached tp the crack propagates at the angle 80 on the 
X'-Y' plane. The angle 60 can thus be defined as a frac- 
ture angle Bc at that time. One of the most important 
point to note is that K* is in the negative for a while 
after the cooling. Since Ks' is in the negative at tp the 
fracture angle 8C takes the positive in Figure 3. There- 
fore, when K" has reached the fracture toughness K^ with 
Kn' being taken the negative, the crack tends to propa- 
gate in curves because the angle ß takes the positive. 

-1.0 
0.005 

Cooling time [s] 
0.01 

Figure 3 Typical relations between normalized stress 
intensity factors, the angle B0 and cooling time 

The procedure for the simulation of crack propa- 
gation is shown in Figure 4. The crack extends incre- 
mentally as follows. The simulation of crack propaga- 
tion starts from the initial crack which characterized by 
the main crack length ap the kinked crack length c2, and 
the kink angle a? The time tf""" when the mixed mode 
stress intensity factor K reaches the fracture toughness 
Kk and the fracture angle ee are obtained from the stress 
inteisity factors Kt and Kn by the criterion. The current 
time tf"™* when K reaches Kk is compared with the pre- 
vious one. If the current time t is later than the 

thus the crack propagates along the fracture direction. If 
the current time f/""0" is earlier than the prevous time 
fi>miaa} flje Q^ propagation is unstable. Therefore, the 
crack propagates along the normal direction on the crack 
tip; the fracture angle e=0 is taken. 

Initial Crack 

FEM 

Crack Propagation Criterion 

tT"" ,   ee\ 

Stable 
Crack Propagation 

I 

parent ^-proneus 

Unstable 
Crack Propagation 

Fracture Angle 

I 
Fracture Angle 

ec=o 

Extend Crack Length 

Figure 4 Procedure for the simulation of crack propa- 
gation 

3. Numerical results 

We simulate the crack propagation to predict the 
crack path which depends on the initial crack, thermal 
condition, and mechanical condition. The material prop- 
erties of the ceramics and the metal are applied as fol- 
lows: 

« = 1.0 ,4 = 0.0 

Ac = Z036[W/mK] 

Ee = 117[G?!i] 

a£= 0.711 xl0-5[l/K] 

ve=0333 

pe=5.60xl(?\kgfm3] 

Ce= 615.6 [J/kgK] 

Xm = 18.1 [W/mK] 

Em = 662[GPa] 

am = 0.103 xlO"4[l/K] 

v„ = 0321 

pm=4.42xl03[kg/m3] 

C  = 808.3 [J/kgK] 

prevous time r/™1***, the crack propagation is stable; 

The initial temperature J^OOK is taken. The heating 
temperature on the ceramics boundary rÄ=1300K is de- 
cided according to the result [7] that the crack occured 
at the cooling process if the ceramics surface was heated 
to over around 1300K. The heating temperature on the 
metal boundary TL is kept at the initial temperature. The 
ratio of kinked crack and main crack length aja2=l/10 
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is taken. 
The crack path as shown in Figure 5 is simulated 

on condition that the crack increment takes from 0.05mm 
to 0.1mm. We selected the fracture toughness of ceram- 
ics Ka=4.0M?a/m and that of metal J$rÄ=64.0MPaVm 
which are widely used. The ceramics boundary is coold 
to the initial temperature T0. The fracture angle 6e 

changes from the positive to the negative while the crack 
is propagating. Because the crack will still propagate 
and the fracture angle Bc will take the negative, it can be 
predicted that the crack may arrange itself to propagate 
perpendiculer to the FGM plate. 

Figure 5 Simulation of crack propagation 
(fl:=0.2mm,fl2=0.02mm, a0=5.0deg) 

Figure 6 shows a crack path simulated on the con- 
dition which differs from that of the previous simula- 
tion. The fracture toughness of ceramics K =1.0MPavm 
and that of metal 2sTOT=1.0MPavm are used. The surface 
of ceramics is coold by heat transfer (A=1.0xl06W/Tn2K, 
J£=300K). The crack propagates in curves quite sharply. 
After the stable crack propagation, the unstable crack 
propagation occured. The crack will still grow in around 
the Y direction by the unstable crack propagation. 

0.1 

a 
E 0.0 

-0.1 
0.0 0.1 

X[mm] 

Figure 6 Simulation of crack propagation 
(a2=0.1mm,a2=0.01mm, <*0=5.0deg) 

4. Conclusion 

In the FGM plate, straight and curvilinear crack 
paths under thermal loading are simulated by FEM in- 
cluding fracture mecahnics. The crack path depends on 
the initial crack, thermal condition, or mechanical con- 
dition. When the mixed mode stress intensity factor 
reaches the fracture toughness with the mode II stress 
intensity factor being taken the negative, the crack tends 
to propagates in curves. On the other hand, when the 
mixed mode stress intensity factor reaches the fracture 
toughness with the mode n stress intensity factor being 
taken the positive, the crack tends to arrange itself to 
propagate perpendicular to the FGM plate. 
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Interface Thermal Fracture of Ceramic Coatings 
in a High Heat Flux Environment 

B.D. Choules and K. Kokini 

School of Mechanical Engineering, Purdue University, West Lafayette IN, 47907. 

The effect of stress relaxation on interface crack formation in a single layer zirconia thermal 
barrier coating subjected to a high heat flux laser heating, followed by cooling is presented. Two 
coating thicknesses, 0.66 mm and 1.02 mm, were tested and modeled. A laser power of 200 Watts 
was used to heat the specimen surface for four seconds. The heating was followed by ambient air 
cooling. It was found that stress relaxation of the zirconia layer increased the strain energy release 
rate of an interface crack in the presence of a surface crack. Also, the resulting strain energy release 
rate was 189% higher in the 1.02 mm coating than the 0.66 mm coating. 

Key Words: TBC, Interface Crack, High Heat Flux, Stress Relaxation, Surface Crack 

1. Introduction 

Ceramic coatings are being developed as a 
thermal barrier to high temperature environments 
such diesel engines, gas turbines and aircraft engines 
[1]. Potential benefits include increased power 
output, improved efficiency and prolonged life of the 
metallic substrates. A limitation is that ceramic 
thermal barrier coatings experience thermal fracture 
which leads to coating spallation and delamination 
[2]-[4]. 

Lower heat fluxes and temperatures in diesel 
engines allow thick multilayer coatings to be used. 
These coatings made of partially stabilized zirconia 
(Y2C>3-Zr02) were found to experience stress 
relaxation. This resulted in reduction of compressive 
stresses at high temperature so that subsequent 
cooling resulted in tensile stresses leading to surface 
cracks [5]. The high heat fluxes and temperatures in 
gas turbines and aircraft engines require thin single 
layer coatings. In the current investigation a 1.5 kW 
COz laser is used to provide a controlled high heat 
flux transient loading to single layer plasma sprayed 
partially stabilized zirconia coatings with thicknesses 
varying from 0.66 - 1.2 mm. In this paper, the effect 
of stress relaxation on an interface crack in the 
presence of a surface crack while subjected to a high 
heat flux environment is presented. 

2. Problem Formulation 

Steel beam samples coated with plasma sprayed 
partially stabilized zirconia were heated with a 1.5 
kW C02 laser for 4 seconds. The samples were then 
allowed to cool to room temperature. During the 
ambient air cooling process surface and interface 
cracks were formed. A schematic of the specimen and 
experiment is shown in Figure 1. Coatings with two 
thicknesses were tested (t<. = 0.66 mm and 1.02 mm). 
The bond coat thickness (%) was 0.127 mm, the 
substrate thickness was 1.27 cm and the specimen 
length (L) was 3.2 cm. Experiments were performed 
with a laser power of 200 Watts. The laser beam 
diameter was 10 mm and the distribution is 
approximately Gaussian. Surface temperatures 
during the 4 seconds of laser heating, for the cases 
considered in this paper are shown in Figure 2. They 
approach 1000-1300°C. The substrate temperature 
remains near room temperature. Surface and interface 
cracks were initiated in the 1.02 mm thick coating 
during cooling after laser heating as shown in Figure 
3. When the 0.66 mm thick coating was subjected to 
the same laser heating and cooling conditions only a 
surface crack was initiated. 

This experiment is modeled as a quasi-steady 
state, uncoupled thermoelastic problem. The finite 
element method is used to solve for the transient 
temperature distributions. The maximum heat flux of 
the laser at 200 W of power is 2.3 W/mm2. The 
ambient cooling conditions are h=9 W/m2K at the 
surface and h=5 W/m2K along the sides and bottom. 
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The crack faces are assumed to be insulated. The 
temperature distribution is then used to calculate 
deformations and thermal stresses in the body under 
plane stress conditions. 

Partially stabilized zirconia has been found to 
experience time dependent behavior at high 
temperatures [5]. This time dependent behavior may 
be stress relaxation, sintering, and or phase changes. 
For simplicity, the time dependent behavior can be 
modeled using the following power creep law: 

at (1) 

where 

ec - strain due to stress relaxation 

o-Von Mises equivalent stress 
T- temperature 
r-time 

AH-activationenergy=277.3x 103(KJ/Kmol) 
R - universal gas constant=8.3143 (KJ/Kmol K) 

A -experimental constant=1.89 x 106(Pa""/s) 
n - experimental constant=1.59 

The interface crack analyzed in the study is 250 
Mm in length. The strain energy release rate (G) of the 
interface crack is calculated using the crack flank 
displacement method [6]. The crack flank 
displacements, (du-shearing and dv-opening), are 
calculated at a radius of 1 \ixn from the crack tip. The 
temperatures near the interface crack are low enough 
that the material does not undergo stress relaxation in 
this region and the linear fracture parameter G may 
be used. 

Surface Crack 
Interface Crack 
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Zirconia 
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Figure 2. Surface temperature during 200 Watts laser 
heating followed by ambient cooling 

"—"«i mm " •*.*?.* . 
• Surface Crack —^« 
.   Interface Crack. '•'■ -Ziree'nia" 

Figure 3. Surface and interface crack in 1.02 mm 
thick coating as a result of 200 W laser heating 

3. Results and Discussion 

The effect of stress relaxation on the surface 
stresses during laser heating and subsequent cooling 
was determined in the 0.66 mm thick coating without 
a surface crack. The comparison of the stresses when 
stress relaxation (S. R.) is or not included in the 
analysis is shown in Figure 4. When stress relaxation 
is not included, the surface stress remains 
compressive during the entire thermal cycle. 
However, when stress relaxation is included, the 
surface stress after heating is less compressive and 
becomes tensile upon cooling. 

Figure 1. Schematic of specimen and experiment 
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Figure 4. Center surface stress of 0.66 mm coating 
during laser heating without surface crack 

In the case of the 0.66 mm thick specimen with 
a surface crack that extends to the interface crack, the 
comparison of the strain energy release rate (G) with 
and without stress relaxation is shown in Figure 5. As 
a result of stress relaxation, G of the interface crack is 
approximately 1.9 J/m2 while it is approximately zero 
at 7 seconds. The corresponding crack flank 
displacements are presented in Figures 6 and 7. Stress 
relaxation increased du during cooling only 0.005 
urn, whereas dv increased 0.018 urn. The tension in 
the coating resulting from stress relaxation facilitates 
the opening of the surface crack and the subsequent 
opening of the interface crack during cooling. 

Figure 6. du of interface crack of 0.66 mm coating 
during laser heating with surface crack 

2     3     4 
Time (s) 

Figure 5. G of interface crack of 0.66 mm coating 
during laser heating with surface crack 
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Figure 7. dv of interface crack of 0.66 mm. coating 
during laser heating with surface crack 

The strain energy release rate for the 1.02 mm 
thick coating and the corresponding crack flank 
displacements are presented in Figures 8-10. The 
thicker coating results in increased coating 
temperatures and stresses which increases the amount 
of stress relaxation. Thus, G of the interface crack 
increases from 0 J/m2 to 5.5 J/m2 at 7 seconds. This is 
caused by the increased opening and shearing at the 
interface crack tip. The interface crack of the 1.02 
mm coating is subjected to a greater value of G (5.5 J/ 
m2) than the 0.66 mm coating (1.9 J/m2). This may 
explain why in the experiment, the surface and 
interface cracks initiated in the 1.02 mm coating and 
only surface cracks initiated in the 0.66 mm coating. 
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Figure 8. G of interface crack of 1.02 mm coating 
during laser heating with surface crack 
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Figure 10. dv of interface crack of 1.02 mm coating 
during laser heating with surface crack 

Figure 9. du of interface crack of 1.02 mm coating 
during laser heating with surface crack 

4. Conclusions and Discussion 

This analysis and the experiments lead to the 
following hypothesis: stress relaxation and surface 
cracking cause interface cracking in zirconia coatings 
subjected to a high heat flux thermal cycle. The 
present results are preliminary, and further 
experiments coupled with analysis are being 
performed in order to confirm this mechanism of 
interface cracking. 
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Rough Estimation of Extent of a Thermally Fractured Zone 
in Hot Rock Masses induced by Injecting Water 

- For More Efficient Extraction of Geothermal Energy - 
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Rough size estimation has been analytically made of a thermally fractured zone which is induced 
around the borehole bottom by injecting cold water into a hot rock mass through an insulated inner 
pipe of the double pipe downhole system. The analysis has been done under spherical symmetry and 
steady state assumptions for three extreme thermal and mechanical conditions and brought the conclusion 
that the fractured zone size is about ten times the borehole radius and more if the convection appears 
within the fractured zone. 

Key Words: Thermally Fractured Zone, Hot Rock Mass, Water Injection, Geothermal Energy 

1. Introduction 

Morita et al. [1] proposed a closed-system 
coaxial downhole heat exchanger with a thermally 
insulated inner pipe to extract geothermal energy from 
a deep thermal reservoir. This simple system has various 
merits: Among others, it has rather good efficiency in 
heat extraction from the rock masses because it has a 
coaxial double pipe system where injected cold water 
goes down the armulus and heated water up through 
the thermally insulated inner pipe (reverse circulation). 

It is known that, for me deeper formation, the 
permeability is smaller and the heat conduction is 
predominant over the heat convection [2]. For the larger 
heat extraction efficiency, Morita [3] proposed a 
concept of making a fractured or failured zone around 
the borehole by thermal stresses: that is, by injecting 
cold water through the inner pipe before starting 
operation of this heat extraction system. We can expect 
strong convective heat transfer within the zone. 

However, only a few researchers [4][5J dealt 
withafeasibility of the fracturing due to thermal stresses 
in the hot dry rock masses cooled by injecting cold 
water into a well. One of them [4] analyzed the thermal 
stresses induced around die borehole to make clear the 
fracturing mechanism. This analysis adopted the steady- 
state cylindrically symmetric "one-dimensional (that 
is, as a function of the radial coordinate only)" 
temperature field, which depended on the finite radius 
of outer boundary used instead of infinity inits analytical 
solution. This unacceptable dependence can be avoided 
by adopting a spherically symmetric or non-one- 
dimensional field in an infinite rock mass. (In this 
connection, we shall deal with the spherically 
symmetric case.) The other [5] calculated the tangential 
component of thermal stresses around the borehole and 
compared this stress with the tensile strength of rock; 

they concluded that the fracture induced reaches to a 
distance of several times the borehole radius or more. 
They considered only a single fracture in the hot 
formation but not the fractured zone induced in it 

To the best of our knowledge, there seems to 
be no report on estimation of the extent or size of the 
fractured zone induced by thermal stresses. Before 
calculating the precise size and shape of it under various 
circumstances, it may be necessary to obtain some 
rough estimates of them under some "audacious" 
assumptions for simplicity. 

In the present paper, we have sought rough 
estimates of only a size of the fractured zone induced 
by thermal stresses. We have used a spherical cavity 
instead of a semi-infinite cylindrical borehole and 
assumed complete spherical symmetry of the fields in 
most part of this paper. The tectonic stresses are also 
taken as hydrostatic or spherically symmetric. 
Exceptionally, an effect of the difference of the 
overburden stress from the horizontal tectonic stresses 
has been studied. Furthermore, we have considered 
only the steady state, which may induce the largest 
extent of the fractured zone. 

In estimating the fractured zone extent, we 
have considered three extreme cases for thermal and 
mechanical conditions (Sections 6 to 8). 

2. Temperature Field 

Let us consider a spherically symmetric 
temperature field in an infinite rock mass with a 
spherical cavity having radius r = a. The cavity wall 
is cooled by the injected water. The semi-infinite region 
r a a is divided into two regions: as r< R and 
R£r<°° with R remaining to determine later; the 
former is the thermally fractured zone with thermal 
conductivity K^, while the latter the non-fractured zone 
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of conductivity K. Newton's law of cooling is applied 
to the boundary r = a; die relative heat transfer 
coefficient is denoted by h. T denotes a difference in 
rock temperature from the undisturbed rock temperature 
TK; T0 = Tw - TR with Tw denoting the temperature 
of water in the cavity. Note that T and T0 are negative. 

For these boundary conditions, the temperature 
field is easily obtained in the form of 

Or 
fo> 

- -Po\ - 

T = ATB {(f) +AK,^U  for a 
'KRJ\ 

sr<R, 

r = AT0(l+AK-)(-) forR sr <oo, 

with 
AT0 = %/{Ap+toc(a/R)}, 

Afi = l + ll(ah),  &K = Kfi/K-l, 

(1-1) 

(1-2) 

(2) 

where Air = 0 implies that the fracturing has no 
influence on the thermal conductivity, and ah is the 
associated Biot number. 

3. Thermal Stresses 

It is easy to obtain the thermal stresses induced 
by the temperature change (1). The thermal stresses 
which vanish at infinity and are accompanied with no 
tractions at the cavity wall surface are as follows: For 
the fractured zone (0 s r < R): 

-•--.--T^[Wi)4(?HW-(f)}(T)'} 
---• --^PHfK(fHr Wf)}«9'} 

0) 
and for the non-fractured zone (Jisr<»): 

(4) 
where E, v, a are Young's modulus,Poisson's ratio, 
and the linear thermal expansion coefficient of the rock, 
respectively. For the case where the fracturing never 
influences on the thermal conductivity, the thermal 
stresses can be reduced from Eqs.(3) or (4). 

4. Stresses due to Cavity Pressure 
and Tectonic Stresses 

The pressure of injected water acting on the 
cavity wall, p0, and the tectonic stresses, yH, causes 
the stresses in the rock, which are given by 

(5-1) 

(5-2) 

where y is the specific weight of the rock and H the 
distance of the cavity from the earth surface or the 
borehole depth. 

5. Non-Hydrostatic Tectonic Stresses 
and Criterion of Failure 

There are many cases that the overburden 
stress is different from the horizontal tectonic stresses, 
even though the borehole is very deep. We shall assume 
that the all-round horizontal stress is n times the 
overburden stress in their magnitude. For such a case, 
the last terms in Eqs.(5) must be replaced by the 
solutions borrowed from Lur'e. 

For the sake of simplicity, the Mohr-Coulomb 
criterion shall be used to estimate the fracturing zone 
size; in addition, we will apply the tensile strength of 
rock to the region of tensile stress which may be 
expected to appear near the downhole. 

6. Estimation of Fractured Zone Size 
- Full Loading Capacity Case • 

In estimating the fractured zone extent, we 
have first considered the simplest case under the 
assumption that the fracturing affects neither on the 
loading capacity of a fractured rock formation nor on 
the temperature distribution within the formation; that 
is, the rock keeps tire same elasticity and thermal 
conductivity as before fracturing and is never invaded 
into by the water injected. 

In tins case, A K = 0, whichmakes the symbol 
R expressing the fractured zone extent in Eqs.(l), (3) 
and (4) vanish, so that Eq.(l-l) and Eqs.(3) become 
identical to Eq.(l-2) and Eqs.(4), respectively, as 
expected. Surnming Eqs.(3) with AK- = 0 for the 
thermal stresses and Eqs.(5) for the downhole pressure 
induced stresses and tectonic stresses yields a total, 
stress field in the infinite rock mass with the spherical 
cavity. Applying them to the failure criteria yields an 
equation to determine the fractured zone extent r-R: 

To study an effect of the difference of the 
overburden stress from the all-around horizontal 
tectonic stress on the fractured zone size or shape, we 
here tentatively abandon the assumption of spherical 
symmetry in the stress field. For that case, £qs.(5) 
should be replaced by the Lur'e solutions so that the 
total stress field depends on the meridian angle ^. 
Consequently, so does the fractured zone extent, that 
is, R=R(<t>). 
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7. Estimation of Fractured Zone Size 
• Null Loading Capacity Case- 

Next, as an extreme case, we have studied 
the case where die fractured zone completely loses its 
loading capacity and is fully invaded into by the 
borehole water; besides borehole pressure acting 
directly on the boundary between die fractured and 
yet-fractured zones, no more tractions act on that The 
fracturing never makes any difference in the 
temperature also in this case, that is, AK = 0. 

For this case, the cavity radius a must be 
replaced by die fractured zone extent R in Eqs.(5) 
and (3) with AK = 0 only when the radius relates to 
the stress boundary conditions but must not for the 
temperature field, since the stress boundary conditions 
are specified at the spherical surface r = R. Thus, we 
obtain the following total stress field: 

*—©■--HSVWß-©'} <"> 

where A2J should be read as T01 Afx since AK = 0 
now. The procedure similar to that in the previous 
section may be applied to determine the fractured zone 
extent r=R. 

8. Estimation of Fractured Zone Size 
- Enhanced Conduction Case - 

Last, to discuss effects of an expected 
occurrence of heat convection within the fractured zone 
on die temperature and stress distributions and the 
change in a fractured zone size, we have introduced a 
"venturesome" assumption; we have introduced an 
appropriate increase in conductivity instead of the heat 
transfer enhancement caused by the convection within 
the fractured zone. In other words, we have employed 
an equivalent thermal conductivity^:^, which 

embodies the heat transfer enhancement by the 
convection within the fractured zone in terms of the 
enhanced conduction. We now have no knowledge of 
the equivalent conductivity and the equivalence 
relations remain to study in future. Here, we have used 
it as a parameter for a parameter survey; it may be 
reasonable since we know that the convection enhances 
the heat transfer so that the equivalent conductivity 
should be larger than the rock conductivity itself. 

The procedure for seeking the fractured zone 
extent r = R for this case is similar to that mentioned 
in the above. 

9. Numerical Calculations and Discussion 

We have carried out some numerical 
calculations to scrutinize the stress distributions around 
the cavity and the fractured zone sizes for each case. 
To obtain the radii of the zone R, the Newton-Raphson 
scheme is applied to the failure condition. 

We have kept the Biot number ah = 100 for 
most cases. Furthermore, we have taken die cavity 
radius a =0.125 m, the borehole depth H=2000 m, the 
undisturbed rock temperature TR=300°C, and the water 
temperature T^lfC for almost all cases. The Young 
modulus, Poisson's ratio, linear thermal expansion 
coefficient and the density of the rock have been 

assumed to be E=24.1 MPa, v=0.3, a = 3 x 10"s 1/K 
and Y-2SS kN/m2. The shear strength and the 
coefficient of internal friction for the failure criterion 
havebeenspecifiedas T0=24.1MPaand jistanCoo^0), 

respectively; 
Tangential stress distributions together with 

the fractured zones are shown in Figures 1 and 2 for 
the full loading capacity case and the null loading 
capacity case, respectively. From Figure 1 for the full 
loading capacity case, we can see that the thermal 
stress contributions predominate over the tectonic 
stresses; the stresses due to the borehole pressure is 
very small. In contrast, for the null loading capacity 
case (Figure 2), the thermal stresses are comparable to 
the others or a little smaller than the tectonic stresses. 
The latter case assumes that the fractured zone never 
carries any internal forces but that die temperature is 
not affected by mefiacturing, so that the thermal stresses 
are very much relaxed. Note that all stresses vanish in 
the fractured region in the figure. 

The fractured zone sizes R versus the Biot 
number ah are drawn in Figure 3 for the above 
mentioned cases for the two well conditions of H=2000 
m, Tw=30(fC and H=6000 m, Tw=50(fC. The size 
increases as the Biot number does and becomes constant 
for the large Biot number, as justifies that we have 
kept the Biot number ah = 100 for almost all cases. 
Although the rock temperature is lower for the less 
deep well, the size of the fractured zone is larger for 
the shallowerwell because of the smaller tectonic stress. 
Furthermore, we can see from the figure that the full 
loading capacity case gives the larger size of the 
fractured zone than the null loading capacity case. This 
is understood from the thermal stress relaxation 
explained in the above. Our rough estimates of the 
fractured zone size are from 1.0 m to 1.3 m for the 
well with H=2000 m and a =0.125 m. In other words, 
the fractured zone radius is about ten or more times 
the borehole radius. 

For the above two cases, we have assumed 
that the temperature field receives no influence from 
the fracturing. It can be, however, expected that the 
convection is induced within the fractured zone if the 
injected water invades into it and that this convection 
enhances the heat transfer so that the temperature may 
lower very much. 
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It may be difficult to take uns convection into 
account in the theoretical analysis. To avoid tins 
difficulty, we have made a "venturesome" assumption; 
we have introduced an appropriate increase in 
conductivity instead of the heat transfer enhancement 
caused by the convection within the fractured zone, so 
that we have studied the case of AJC 5*0. 

Rgure 4 describes the enlargement of the 
fractured zone size due to the fictitious improvement 
of the heat transfer within the fractured zone; me size 
increases almost linearly with the ratio K^ IK ( 

= 1 + AK ) of heat conductivity in the fractured zone 
to mat of the yet-fractured zone. The convection within 
die fractured zone seems to accelerate the heat transfer 
and fractured zone extension to a great extent 

10. Conclusions 

(1) For the 2000 m or more deep thermal 
reservoir, the thermal stresses predominate over the 
tectonic stresses and those due to the hydrostatic 
pressure in the borehole, if the fracturing affects neither 
on the loading capacity of a fractured rock formation 
nor on the temperature distribution wi trim the formation. 

(2) The fractured zone size is estimated from 
1.0 m to 1.3 m for the well with the depth H=2000 m 
and the borehole radius a =0.125 m. In other words, 
the fractured zone size is about ten times the borehole 
radius. 

(3) We can expect that the zone size is larger 
than ten times die borehole radius, if the fractured 
zone is formed by water injection and the convection 
appears within it 
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On Some Mixed Problems for a Compound Space, Containing a Crack, with 
the Existence of a Stationary Temperature Field. 

V.N.Hakobian 

Institute of Mechanics of National Academy of Sciences, 24b, M.Baghramian ave., Yerevan 375019, Armenia 

A plane strain state of compound elastic space, situated in a stationary temperature field, which 
consists of two homogeneous half-spaces, on the joining plane of which the space is weakened by one 
or several finite cracks, or by a system of periodical cracks, is considered. It is assumed that on one 
of the banks of all the cracks the components of the elastic displacements and temperatures are given 
and on the rest of the banks the components of stresses and the heat flow are given. 

The problems are finally, formulated in the form of a system of two singular integral equation of 
the second kind and their closed solutions are built. 

Key Words: Elasticity, Mixed Boundary Problem, Crack Thermal Stress 

Let an elastic compound plane situated in a 
stationary temperature field and consisting of two 
homogeneous half-planes with different modules of 
shears u,,u2, Poisson's coefficient v,,v2 and the 
coefficients of heat extension a,, a2, along the line 
of the joining line of the half-planes on the intervals 
(at,bk) (k=l,2,....n) be weakened by cracks on the 
upper bank of which the stresses components 
%,(*) = er™ (x,0)-n™(x,0)  and the values of heat 

flows -a, dT.(x,0)/dy = q,(x) are given, and on the 
lower banks the components of displacements 
W2(x) = w2(x,0) + h>2(x,0) and temperature values 
T_(x,0) = q2(x) as well as the resultants pt 

(k=l,2, ....n) of the contact stresses acting there , are 
given (Pic. 1). 

Pic. 1 

It is supposed to determine the opening of the 
crack, the contact stresses acting on the lower banks 
of the cracks and out of the cracks on the joining line 
of two half-planes, as well as the intensities factors of 
these stresses at the end points of the cracks 
depending on efforts pk (A=7,2,....»), displacements 

W2(x) and the temperature field. 

At first we shall cite the solution of the 
temperature problem. With this aim let's introduce the 
functions 

T{x) = Z(x,0)-T(x,0) 

R(x) = -aldT.(x,0)/dy+a1dT_(xjO)/dy, 

•=ÜM)) 
describing the jump of the temperature and the 

temperature flow on the banks of the cracks for the 
consideration. Then from the conditions on the banks 
of the cracks for determining these functions we shall 
have the following system of singular integral 
equations of the second kind 

x sL; 

(1) 

r,(x)--^ds = ft(x) 1 71  fs-X 

r,(x)--J^A = /,(x) 2 Ttfs-X 

(X€l) 

where 

r1(x) = a1T'{x);    r2(x) = R(x); 

/»(*)*-(°i+a»)fc(x); V-a,/a, 

In this case the system of integral equations (1) 
should be considered together with the conditions 

]rj(x)dx = 0.  0=1,2) (2) 

In order to build a closed solution of the system 
of integral equations (1), we shall multiply the second 

of them in ± V v* and sum with the first one. 
As a result, for determining the functions 
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Vytö-'.(*)-(-l)^(*). 
we shall get the following    two separate singular 
integral equations 

^+^^0as = Rj{x} (3) 

In this case the conditions (2) will have the form 

j\Vj{x)dx = 0;Q=12;  k=l,2..n) (4) 

We shall notice that after having determined die 
functions   y,(x)   (r=l,2),  it is easy to find the 

functions T(x) and R(x) by the formulae 

^-rTrlv.W-v^)]; 
2^ 

and determine the distribution of the temperature over 
the whole surface. 

The general solution of the equations (3) is given 
by the formulae [1] 

(5) 

,,  *,«  {-\)Jfsx;{x) 
Wj\x) = -—r- :—: : 1        l+v 1 + v 

x|-/jr;(,X,-,) + ^w 

where X*(x)   (pi ,2) is the value of the piece-wise 
analytic functions 

*;w=fl(-aJV*J'~' 

0<y,=-arg 
A   *\ 

ll + /(-l)>VvTJ     J 

on the upper bank of the crack, and P^(x) is the 
polynomial of the degree (n-1) with the unknown 
coefficients, which are determined from the condition 
(4). 

Now we shall pass to the solution of a 
thermoelastic problem and we shall consider, that the 
temperature field is well-known and is equal to 
T,(x,y)v/hen y>0 and T(x,y) when jxO.Then 
introducing the functions 

X(JC) = [<>(*,<)) - ft« (x,0)] - [o»(x,0) - ft® (x,0)\ 

W(x) I G<2» = [«(,) (;t,0)+n>(1) (x,0)] - [um (x,0) +ivm (xfij 

describing, correspondingly, the opening of the cracks 
and the jump of the stresses acting on different banks 
of the cracks, we come to the following system of 
determining integral equations: 

«*, jW'js) ,    ia2 cx(s) 
71  I S-X TZ  }S-X 

ib, tW(s) J    ib2 rX{s) (6) 

(*cl) 
which   should  be   considered  together  with  the 
conditions 

]%(x)dx = ft; 0^) = W(bt) = 0 (* = 1,2 n) (7) 

where 

F,W-i-[(er-e;»)x1W-;.(r,'(4 

f,W-f [yx,W+(ef'((6'")' -W)- 

-e;"((6f)'-(6?>)')) ir,fe)]: 

aW.r,M±ijSfc£U 

a, = 
ewew 

e ;  a, =  2       29 
2((ei,))2-(e<")2)   L   ef>e<2) 

 5 ; b2——; 

e",=2rtr; e"-(1+a>": 
a, = l/(l-2vy);   ^0=I(ef>-e«); 

/0=e«(ei"+ef)-ef)(e<"-ef)); 

For the solution of the system of determining 
integral equations (6) a quadratic equation is 
considered 
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a2X
2-(ai-b2)l + bt=0 (8) 

Discriminant of this equation 

4u[n(v,-v2)
2-4(l-v1)(l-v2)(3-4v2)] 

[n(l-2v,)(l-2v2)+2(l-2v2)]2 

depending on the elastic constants of half-planes can 
be a zero or different from zero. In Table 1 for various 
values of Poissons' coefficients v^ (/=1,2) some 
numerical values of the parameter u, in case of which 
D=0, are reduced: 

Table 1. 

0.1 0.2 0.3 0.4 

0.1 633.6 113.4 33.6 

02 748.8 
r 

403.2 672 

0.3 163.8 492.8 
■ 

■&■■■■■:::■:.#. 2332 

0.4 62.4 105.6 302.4 

In case, when the discriminant D of this equation 
is different from zero,the solution of the system of 
determining integral equations is reduced to the 
solution of two separate singular integral equations of 
the second kind with respect to the functions 
<p.(x) = x(x) + XjW'(x) Q=12), where X. are the 
roots of nie equation (8). These equations have the 
following form 

<P,W-^P^*=ö;W (*«*;-W) (9) m i s-x 

with this the conditions (7) obtain the form: 

». 
](?J(.x)dx = Tlc,  (j=l,2;  k=l,2,...n) (10) 

here 

gr.(x) = QXx) + Q]{x); Q,(x) = F2(x) + \/t (x); 

Qj(x) = F2'(x) + XJFl*(x); 

(a1+b2)-(-iyjD_ 

and the solutions of tbe equations (9) are given by the 
formula [1] 

n ' .       (ii) 
+Q-(x)+pJx)x;(x) I 

(xeL;   j = l2) 

where  X*(x) is the value of the piecewise analytical 

function 

*,(*)=n(*-'*rM*r'; 

JJ     2%i     2it^ 

gj^-r^;      0<e;=arg(g.)<27i. 
"i 

On the upper bank of the section L, and P„.,(x) 
is the polynomial of (n-1) the power with the 
unknown coefficients, which are determined from the 
condition (10). 

After the determination of the functions   cp,. (x) 
it is easy to determine the rest of the important 
mechanical characteristics. 

We shall notice that when D>0 

Y;4_/Mß>=lnkl/2*)'     ' 
but in case of EK0 

y, =cc-/ß; 

y2=l-a-;ß;(a = 8,/27t; ß = %|/2«). 

We shall reduce the values of contact stresses, 
acting outside the cracks, on the line of the joining 
line of the half-planes and intensity factor of the 
stresses at the end points of the cracks with n=l 
(a, = -c;i, = a), when D<0: 

<>(;c,0)-«*,0) = 

71   r   a + x"''    -a + x 
a-x a-x 

-A 
a-x 

Aql 
a+x -Yi 

1 a—x 

a-x (\-q ?M *Y.) 

Aq, 
a+x 
a-x 

a 

I; 

V   Q'Mds 
i tl\    l.vll.C— * 

Q'2(s)ds 

i{l-ql)sm(iVY2)-{®Ms-x') 

(M>*) 
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^((-iy«)-^((-i)^)=(-ir4 T> + 

q, °r        Q]{s)ds 
+ (l-q^sm^^-Ujisis-i-ifa) 

where 

/2=e«e(
2
2)+e«e<2); A   ih-Kh) 

+(ei"-ef»)(eS"e(2)-e'1)ef»)] 

A=(e'2'
)
+ef»)2-(eS1)-e<2))2. 

In case, when D=0, the equation (8) has two 
similar roots, Xl = X2 = (a, -62) J2a2. Then we only 

can obtain the first of the equations (4), where, this 
time, ql=(at+bl)/2>\. The solution of this 
equation is obtained by the first of formulae (11), with 
this y, = 1 / 2 - j'ß. Later, substituting the value of the 

functions x(*) = <P,(x) + ^:W'(x) into the first of the 

equations (1) for determining the function 1V'(x),we 
shall have exactly the same integral equation, as for 
the function (p,(;t), with the only difference that the 
right part of this   equation will be the following: 

**<Pi(*)/?i+*;*(*)■ 
Building the solution of this equation in the 

same way, we shall find the function W'(x), after 

which the function x(x) will be found. The unknown 

constants, entering the found functions are discovered 
with the help of the condition (7). 
We shall reduce the formulae,  obtained for the 
function W'{x) in case of one crack: 

m CO .(*X*-*) 

9flt 

„., x.  (a-xXa + s) 
f (a + xAa-s) 

~z2(l-qf).{       (ofisKs-x) 

Wfo)(     a     (a-x)) 
+   t      T\  1 + —InT r \aXx) 

n(l-q^)\     rn    (a + x)J   ' 

ds + 

It is obvious from the obtained expressions that 
when D=0 the contact stresses have also a logarithmic 
singularity besides the power singularity at the points 
x = ±a. 

At the end we shall mention, that during the 
solution of the problem for a compound plane, 
containing a periodical system of collinear cracks, the 
obtained system of determining integral equations is 
identical with the system (6) and differs from it with 
Hilbert's kernel, figuring everywhere instead of 
Cauchy's kernel. Its solution is built in the same way. 

Reference 
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Thermal Stresses of Laminated Composite Plates and Shells 
M.R.Eslami', B.Shiari*, A.Y.N.Sofla*, H.Eslami" 

*Department of Mechanical Engineering, Amirkabir University of Technology, P.O.Box 15875-4413, 
Tehran, Iran 

*Embry-Riddle Aeronutical University, Daytona Beach. FL 32114, ISA 

Accurate three dimensional interlaminar thermal stresses of unsymmetric laminated plates and shells 
due to uniform temperature rise are presented. Second order layerwise theory of Reddy is considered 
and applied to the plate while fist order layerwise theory is used in shell formulation and the finite 
element method is used at inplane coordinates. Principle of virtual displacement is applied to derive 
finite element equations. Numerical examples are presented to show influence of layerwise theory to 
find interlaminar thermal stresses. 

Key Words.TJierma/ Stresses, Layerwise, Finite Element, Plates and Shells 

1. Introduction 

In recent years, increasing need for high streng- 
th to weight ratios in structural components has 
led to the use of fiber-reinforced multilayered struc- 
tures. High-performance composite materials can 
be used in the form of laminated plates and shells. 
The problem of interlaminar stresses in laminated 
plates and shell structures continues to be a popu- 
lar topic for intensive research. Temperature chang- 
es often represent a significant factor,and some- 
times the predominant cause of failure of compos- 
ite structures subjected to harsh working condi- 
tions. Delamination and longitudinal cracks in the 
matrix are typical failure mechanisms in composite 
thin-walled members due to excessive stress lev- 
els caused by thermal stresses.  Various first and 
higher order plates and shell theory are used to de- 
termine the interlaminar thermal stresses in lami- 
nated plates and shells subjected to thermal load- 
ings [1-4].   These theories are often incapable of 
determining the three dimensional thermal stress 
field at ply-level. Thus analysis of thermal stresses 
n-.ay require the use of three dimensional elastic- 
ity theory or Layerwise laminate theory. In con- 
trast to the single-layer theories.the Layerwise the- 
ory is developed by assuming that the displace- 
ment field is only C° continuous through the lam- 
inate thickness.   Owing to the mathematical dif- 
ficulties encountered in the analytical treatment 
of three dimensional thermoelasticity analysis of 
laminated plates and shells, the exact solutions 
are scarce [5-7].   The layerwise theories can be 
extended to find three dimensional thermal stress 
field at layer interfaces [8]. In the present paper 
three dimensional thermal stresses in laminated 
plates and shells based on second order layerwise 
theory of Reddy[9] due to uniform temperature 
rise are found. . 

The objective of this study is to investigate the 
interlaminar thermal stresses within unsymmetric 
laminated plates and shells. The Lagrangian in- 
terpolation function is used through the laminate 
thickness, and the finite element method is used 
at inplane coordinates. 

2. Theoretical Formulation 

Consider an N-layerorthotropic laminated com- 
posite, each being oriented arbitrarily with respect 
to the principal coordinates (01,012). The dis- 
placements (i/,t\tc) at a generic point (01,03,2) in 
the laminate are assumed to be the form. 

u(allQ2.2) = ^(7J'(QI,02)^(2) • 
i=i 

n 
*(<*!, a2, 2) =£W(o,,Ora)^(z)       (1) 

i=i 
n 

U.(01,02.Z) = X]^(01,02)^(2) 

where {U>, VJ, W*) denotes the nodal values of dis- 
placement field [v,v,w) , n is the number of nodes 
through the thickness, <jj and \jj are global in- 
terpolation functions for discretization of the in- 
plane displacements through the thickness. For 
quadratic variation through each numerical layer 
these functions are given below: 

i>l{z) = \\\=) 2l < 2 < 23 

4>»{z) = A<2)(z) 22/-1 < 2 < 22/+1 

*2/+1(2) = 

f   #>(*)             22/- 1 < z < *2/+l 
[   X[W\z)       22/+1 < Z < 22/+3 

<j>N(Z) = A^f» Z.V-2 < 2 < 2N 
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4" = -f(i-Jr> (2) 

where (7 = 1,2,3,...,iv"e) , hk is the thickness of 
the fc-th layer, z = z — z\, and z* denotes the 
z-coordinate of bottom of k — th numerical layer. 
The stresses in the k-th layer may be computed 
from the three dimensional stress-strain relation. 
For a k-th (orthotropic) lamina we have: 

'  <TU   ' 

<T22 

Viz 

T22 
= 

nz 
.   T12   . 

C\\ C\2 Ci3 
Cl2 C22 C23 
C\z C23 C33 

0       0 0 
0       0 0 

Cl6 C$2 CG3 

0 
0 
0 

C44 
C45 

0 

0 
0 
0 

C45 
C55 

0 

C16 
C26 
C36 

0 
0 

C&6 

«1 "Äil 
€2 Ä2 

722 
- 0 

7u 0 
.  712  . l Äa J 

(3) 

where [Cy]t and [/?,]* are trasformed stiffness and 
thermoelastic matrixes,respectively. The finite el- 
ement model corresponding to this theory is devel- 
oped by applying the principal of virtual displace- 
ments in absence of body forces to a representative 
physical element of the plate or shell. From the 
principle of vitual work: 

/  fofcy] dv =   j [TiSui] ds (4) 

where a^ are the components of the stress tensor, 
(ij are the components of the strain tensor, Ti are 
the components of the surface traction. Formula- 
tions of plate and shell are completed in following 
sections. 

2.1 PLATE FORMULATION 

In plate coordinate (1, j/, z) the linear strains 
associated with the displacement field in equation 
(1) are: 

N 

■E^ e" - z_ dx 
J=l 

TV 

Cj,y 

M 

J=I 

(5) 

j=i        ■ ■ h dy 

;=i J=I 

-ST<dUJ < dyj 

fry -U  Q     +   QX 
j=l 

w 

Nodal displacements (i/;, VJ, WJ) in the finite el- 
ement method solution are approximated by 

t=i 
n 

V"" = 2>'%(*,y) (6) 
t=i 

n 

»=1 

whereJVj is the linear shape function through the 
triangular elements. 

2.2 SHELL FORMULATION 

In curvilinear coordinate (ai,a2,z), the linear 
strains associated with the displacement field in 
equation (1) for a cylidrical shell are: 

-E^ U dx 

i=i 

IxB 

7" = K^T)S 00 ^ 

^N 
z 0 r-iV^ 

w X 

>=i        j=i 
dz 

In order to complete the finite element formu- 
lation.the displacement^7,1^,10) are approxi- 
mated on the jth plane of the shell by: 

^'(a1,0 2,z) = ^^%(Q1,O2) 
«=1 

3 
^■(a1,a2,z) = ^^'iATi(a1,a2)      (8) 

i=l 
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J = l 

where t';', V;i and W->' are the displacement com- 
ponents u.v.w at the jth node of the two-dime- 
nsional finite element representation the jth plane 
of physical shell element. The functions #,•(<*! ,0:2) 
are two-dimensional Lagrangian interpolation poly- 
nomials associated with the ith node of two dimen- 
sional finite elements. 

3. Numerical Results 

To illustrate some of the thermal effects that 
occure in layered composite plates and shells, the 
numerical results will be presented. Typical prop- 
erties for a graphite fiber/epoxy would be: 

En = ISOGpa, £22 = £33 = lOGpa, G13 = 
7.lGpa.G23 = C12 = 7.1Gpa, ui3 = 0.3,i/i2 =<'23 = 
0.27, an = 0.02 * 10_6m/cc, a22 = 033 = 22.5 * 
10_6m/°c 

Consider a crossply(0/90) graphite/epoxy rect- 
angular plate. The boundary conditions are as- 
sumed simply supported (tr(z,0) = w(x,l) = 0 
,v{x,0) = 0) . the plate is divided to ten elements 
in x and y directions and for observing the edge 
effects, the element sizes near the edges are cho- 
sen small. In thickness direction eight numerical 
layers (or seventeen nodes ) are assumed. Figure 
(1) illustrates the deflection of the plate for 103oC 
tempeature increasing. Figure (2) shows the trans- 
verse normal interlaminar stresses. It can be seen 
that the magnitude of trnsverse stresses become 
to maximum values near the edges. These high 
stresses could be cause the delamiation. Figures(3) 
and (4) illustrate the transverse shear stresses. The 
magnitude of these stresses are increased near the 
edges of plate. . 

?0.5 

y      0 0       x 

Fig.l.The deflection of crossply (0/90) 
graphite/epoxy plate. 

Considering now a stacking sequence of crossply 
(0/90/0/90) graphite/epoxy cylindrical shell. The 
inner diameter and thickness of each layer areas- 
sumed 12.7 mm and 0.127 mm , respectively. Fig- 
ure (5)and (6) show the axial, circomfrential and 

radial stresses in thickness direction. It can be 
seen, the interface between the outer 0" and 90° 
layers experiances a tensile radial stress. . 

0  0 

Fig.2.The transverse normal stresses in crossply 
(0/90) graphite/epoxy plate. 

0 0 

Fig.3.The transverse shear stresses in crossply 
(0/90) graphite/epoxy plate. 

0 0 

Fig.4.The transverse shear stresses in crossply 
(0/90) graphite/epoxy plate. 
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Three-Dimensional Transient Thermal Stresses of a Cross-Ply Laminated 
Rectangular Plate due to Partial Heating 

Y.OOTAO*, R.KAWAMURA* and Y.TANIGAWA* 

* Department of Mechanical Systems Engineering, Osaka Prefecture University, 
1-1, Gakuen-cho, Sakai, 593, JAPAN 

In this study, the theoretical analysis of a three-dimensional thermal stress problem is developed 
for a multilayered anisotropic laminated plate due to partially heat supply in a transient state. As an 
analytical model, we consider a laminated rectangular plate consisting of an orthogonal pile of layers 
having orthotropic material properties, i. e. a cross-ply laminate. We obtain the exact solutions for the 
three-dimensional temperature in a transient state and three-dimensional transient thermal stresses of 
a simple supported plate. As an example, numerical calculations are carried out for a 3-layered 
cross-ply laminate, and some numerical results for the temperature change, the displacement and the 
stress distributions are shown in figures. 

Key Words Elasticity, Thermal Stress, Composite Material, Cross-Ply Laminate, Rectangular Plate, 
Three-Dimensional Problem, Transient State 

1. Introduction 

Metal matrix composites have excellent material 
properties for heat resistance. They have been 
developed as new material that is adaptable for a high- 
temperature environment, for example, the structural 
components of a space-plane or a fusion reactor. It is 
necessary to take into account not only the effect of 
steady thermal stress but also effect of unsteady thermal 
stress. As one of the analytical modeling of the 
composite materials, the so-called laminated plate can 
be taken into account. Therefore, we can recognize 
that study of the thermal stress problems of these 
laminated plates becomes to be important and there 
are several analytical papers [l]-[4] concerned with 
these problems. However these papers restrict to the 
steady thermal bending problems using plate theory. 
On the other hand, one of cause of damage in these 
laminated plates includes delamination. In order to 
elucidate this phenomenon, the thermal stress analysis 
that considered the transverse shearing stress and the 
normal stress in the thickness direction are necessary. 
However, the study considered these effects are few. 
So far as we know, Tungikar and Koganti presented 
the three-dimensional exact solutions for thermal stress 
problem of simply supported rectangular orthotropic 
laminate [5]. However this paper restrict to the steady 
thermal stress problem. In our earlier paper [6], we 
analyzed the transient thermal stress problem of simply 
supported cross-ply laminate using the classical plate 
theory based on Kirchhoff-Love's hypothesis. However 
this paper didn't take into account the transverse 
shearing stress and the normal stress in the thickness 
direction. 

From the viewpoint of above mentioned, we 

analyzed the three-dimensional thermal stress problem 
involving a cross-ply laminated rectangular plate due 
to partially heat supply in the transient state. 

2. Analysis 

2.1 HEAT CONDUCTION PROBLEM 
We consider that the laminated rectangular plate 

made of n layeres as shown in Fig.l, the lengths of the 
sides and thickness of which are denoted by 2LX, 2LV 

,and B, respectively. We assume that each layer is 
composed of dissimilar plate with orthotropic material 
properties. And we consider an cross-ply laminate in 
which principal axis for each layer is parallel to the x 
or y axis. Throughout the paper, the indices i (=1,2,**■ 
/i) are associated with /-th layer of laminated plate 

■öl  \ i   tz 

CO 

f /Tbfb(x)gb(y) 

Tafa(x)ga(y) 
Lx.Ly Lx.Ly 

T=0 

x.y 

Fig.l Analytical model and coordinate systems 
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from the lower side. Let b: be the thickness of the t'-th 
layer, and the origin of a local coordinate z,is taken at 
the bottom side of j-th layer. We assume that the 
laminated rectangular plate is initially at zero 
temperature and is suddenly heated partially from the 
lower and upper surfaces by surrounding media with 
relative heat transfer coefficients A and A.. We denote a o 
the temperature of the surrounding media by the 
functions Tfjx)gjy) and TJb(x)gJy), and assume 
that the end surfaces of the laminated plate are held at 
zero temperature. The transient heat conduction 
equation for the j-th layer in dimensionless form is 
shown as 

3f    _  d-f   _  d2f   _ d2f 

and the initial and thermal boundary conditions in 
dimensionless form are taken in the following forms: 

T = 0;  f = 0     ; i=l~n 

z,=0; ^-H£ = -HaTfJx)gJy) 

^=^>,=0;f = f,; /=i~(«-l) 

■ + K,r-r ;/=l~n    (1) 

■" dz, a?,. 
P=I- 

(2) 

(3) 

(4) 

(5) 

Z. = K;  £+HJn = HJJJx)gJy) (6) 

(7) 

(8) 

x = ±L; T.=0 

y=±Ly;T = 0 

In expressions (1>(8), we have introduced the following 
dimensionless values: 

T0 B 

(x, y, z,Z,) = —•-, Kt=-±; *=*,; 
B >yj. 

,t = -^-, (Ha,Hb) = (ha,hb)B     (9) 

where 7) is temperature change, KB (k=x,yz) is thermal 
diffusivity, Ä,.. is thermal conductivity, t is time, and 

T0, K0 , and X0 are typical values of temperature, thermal 
diffusivity, and thermal conductivity, respectively. For 
the sake of brevity, we introduce the following 
symmetric conditions for the temperature functions 
fjx), fb(x), gjy) and gb(y) without loss of 
general iry: 

fj-x~)=fj*), f,(-x)=fb(x) 

gü(-y)=gjy), gb(-y)=g„(y) (10) 
Introducing the finite cosine transformation and Laplace 
transformation, the solution of equation (1) can be 
obtained so as to satisfy the conditions (2)-(8). 

T. = ^^JT^cosq^coss,} (ID 

where 

~       4   Tl  _' 

A 2exp(~n2.%) _ _ 
+X, A',    v (A coshfiz + B sinhß.z) T-   iiAffi..)      ' " '      ' " ' 

«f, 2exp(-[i1'Z) _ _ 
+ ^      MA7„'|    (A< C0S1<Ä + B> Sin1& <12> 

AndinEqs.(ll)and(12), qt, j,,p„, ß,;,and y.. are 
as follows: 

4* = 
(2k-l)n (2l-l)n 

2L-'Si=- 2L 

P-'V^A' + Vf^ 
ß. = _ y— lf ^/K.-9 -s <0 

2—2—2 

,1 ^-K^t-y 
Y„ = if ji^-9

2-*2>0(13) 

and n; represents the>-th positive roots of the following 

transcendental equation: 
AM = 0 (14) 

and the condition for the eigenvalue \i. is given as 

u, < u., <... < nm < ^JK^+K/- < \Lmtt <... (15) 

For the sake of brevity, the detail of the temperature 
solution is ommited here. 

2.2 THERMAL STRESS PROBLEM 
In the associated thermoelastic field, we now 

develop the three-dimensional analysis for transient 
thermal stresses in simply supported cros-ply lamineted 
rectangular plate. We introduce the following 
dimensionless values. 

G„<      . .    (u^v^w.) 
—~r, (ü, v., w.) =    '   •'   ' a„£„r" '   •'  •'      aXB 

"    a„' C"    £„ (16) 
~0 "0 

where crM is the stress components, (up vn wj are the 
displacement components, au is the coefficient of 
linear thermal expansion, Cm is the stiffness constant 
of elasticity, and o0 and EQ are the typical values of 
the coefficientt of linear thermal expansion and Young's 
modulus of elasticity, respectively. 

Substiruting the stress-strain relations and 
displacement-strain relations into the equilibrium 
equations, the displacement equations of equilibrium 
are written as 

«c* + cai^„s=-(CMiä, + Ci:;ä, + C13,.äJ 

xY2,T,u4*sin<i*xcoss
l> (17) 

(Cn + CvK-m +CMvi,s+CZ2vi,.+CMvi,r: 
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^YäT^sicos^sins,y (18> 
t=i ;=i                

(C0I + C^W^-HC^ +C^)vi,rz+Csswl,.+Cuwi,. 

<II^- (19) XJL 2Jmncos iscos s>y 
If the lower and upper surfaces are traction free, the 
the boundary conditions of lower and upper surfaces 
and the conditions of continuity at the interfaces can 
be represented as 

z, =0; °=1 
= 0> *,, =0' 5«. =° 

z=b: ö_=0,  0.  =0,  c    =0 
*"n «'       =n 

5 = *,. zM =0; a=. = o^„ a^. = <J3J„ 

ä* =a^,, *, ="/♦.> *, = *,♦.• *. = K, <20> 
We now consider the case of a simply supported plate. 
The mechanical boundary conditions are given as 
follows: 

x=±lx; ö„=0,  v,=0, iv;=0 
y = ±Ly; Ö„, =0,   üt = 0,  w, = 0 (21) 

The boundary conditions (21) are satisfied 
automatically if the displacement components are given 
the following forms: 

« = ^Liu^lJ + U^zfisinqjccossy 

*, = X£{V«*A>+ v*JV}cos<itx
sins>y 

vv = XXK»^> + Wlt,Ol)}cosg^cossly (22) 

In expressions (22), the first term of right side shows 
the homogeneous solution of Eqs.(17)-(19) and the 
second term of right side shows the particular solution 
of Eqs.(17)-(19). Then UcJz,), VJzJ, and 
Wdltl(z,) are given by the following expressions: 

3 

.7=1 

3 

3 

WJV^RuuiG^JV+V-vuF^JV} (23) 

where 
C^d) = coshfm^), S^fzJ = sintym^) 

B"> B 

3A 
Cm(z,) = cosim^), S^Jz,) = sin(muz.) 
^■^+'i^'°«-lif r«+JF>Q 

'i 
B("   \ B(" 

^+i^J'a-=-lif^i^<0 

(24) 

ru=2^~£cos 
>.+2(y-i)it' 

3 ; .7=1,2,3 

<|> =cos~ 
i{-dir\ 

, d.=- 
'lC"'A'"+(B'i>f 

3(Ac"f 

f,=~ 
2(B'"f+9A">B'"C"'+21D'i'(A(")1 

27(A'"f 

'=c c c 
^33i    *»i    SSI 

+^{cS5XCm^,.-C;.)^Q^C33i.Q,.-2Cr,C55,.)} 

+^;{-clli.(crAL-^J-2^cI21+ctti.)(c13i+c5,) 

+CB(Ctt(CB/+2C  )+C,^(^j-2Cj}_ 

+q6X5,c«i-2q2,c55,)}+^{Q,.(c1,,.cS2,-c1L) 
+C6S,.(C22,<:S,-2C12,.C<4,.)}+5;

,SC22,.C44,.CW,. (25) 
Substituting Eqs.(22) and (23) into the displacement- 
strain relations and the stress-strain relations, the stress 
components are obtained. In Eq.(23), F^ and Gau 

(i=l~/i, J=\X$) are unknown constants, which should 
be determined from mechanical conditions (20). 

3. Numerical results 

As an illustration of numerical calculations, we 
assume that each layer of laminated plate consists of 
the same orthotropic plate, and consider the three- 
layered (0° /90° /0° ) cross-ply laminated plate 
composed from alumina (AljC^) fiber reinforced 
aluminum composite. And, numerical results are 
presented for the following values. _ 

Ha = Hb =5.0, I = 0, Tb = 1.0, I, = L, = 3.0 

fb(x) = #(1.0 -\x\), 8b(y) = tffl.0 - \y\) (26) 
where H(x) is Heaviside's function. The material 
constants are shown in Table 1. In Table 1, the subscript 
L denotes the longitudinal direction of fiber and the 
subscript T denotes the transverse direction of fiber. 
The typical values of material properties such as K0, 
A,0, a0 and £0, used to normalize the numerical data, 
are based on those in fibre direction. 

The  variations of the temperature,  the thermal 

Table 1 Material Properties 

Thermal diffusivity [m2/s] KL-41.1X10-6   KT=29.5X10'b 

Coefficient of thermal 
expansion ll/K] 

aL=7.6X10"6     O^H.OXIO"6 

Thermal conductivity [W/(mK)] A,=1.05X102    AT=0.75X102 

Young's modulus 
of elasticity IGPa] 

EL=1.5X102      ET=1.1X102 

Shear modulus 
of elasticity fGPa] 

GLr=0.35X102   Gn-^IXIO2 

Poisson's ratio vLT=0.33    i/n^O.33    v-n =0.242 
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Fig.2 Variation of the temperature on the heated 
surface (y=0, z=0.5) 

Fig.3 Variation of the thermal displacement w on the 
heated surface (y=0, z=0.5) 

Fig.4 Variation of the thermal stress a   on the 
heated surface (y=0, 1=0.5) 
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Fig.5 Variation of the thermal stress a   on the 
interface between the second layer and the 
third layer (jc=0, z = l/6) 

Fig.6 Distribution of the stress c  in a steady state 
on the interface between the second layer 
and the third layer (f=1/6, x=«>) 
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Fig.7 Variation of the thermal stress c   on the 

interface between the second layer and the 
third layer (x=0, z=l/6) 

displacement w and the thermal stress c on the 
heated surface (y=0, z=0.5) are shown in Figures 
2 to 4. Figures 5 to 7 show the variations of the thermal 
stresses on the interface (z =1/6) between the second 
layer and the third layer. The variations of the normal 
stress GS and the transverse shear stress c along the 
y axis (x=0) are shown in Figures 5 and 7. The 
distribution of the transverse shear stress a in a steady 
state is shown in Figure 6. 
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Application of a Simplified Method Expressing Effects of Anisotropie Ply to 
Thermal Stress Analysis of CFRP Cross-Ply Laminates. 
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We have investigated the failure behavior of CHRP cross-ply laminates under thermal loading, 
by the use of a simplified method which could express effects of an anisotropic ply. In this report, the 
finite element method analysis is applied to the extension of a transverse crack in the outer ply of CHRP 
cross-ply laminates under uniform thermal loading. Making a comparison between the result of FEM 
analysis and that of our simplified method, we discuss the practical application of our simplified method 
to the transverse ply cracking in CFRP cross-ply laminates for various values of elastic constants of plies 
and configurations of laminates. 

Key Words: CFRP Cross-Ply Laminates, Ply Cracking, FEM Analysis, Anisotropic Ply, 
Application of Simplified Method. 

1. Introduction 

Recendy, with the increasing use of fibre rein- 
forced composite materials as space structure compo- 
nents, the study of thermal fatigue strength of compos- 
ite materials has received wide attention. The fracture 
process of composite materials, especially CFRP cross- 
ply laminates, is very complicated and the thermal fa- 
tigue strength is affected considerably by the laminate 
structure and the micro fracture [1]. 

When a laminates, consisting of a stack of lami- 
nae bonded together, is subjected to a thermal load, the 
response depends on the properties of the individual 
laminae and the way they interact with each other [2]. 
It is well known that the properties of laminae are not 
isotropic. An orthotropic laminae has three mutually 
perpendicular planes of material symmetry and the 
properties at any point are different in three mutually 
perpendicular directions. Therefore, it is necessary to 
discuss the fracture of composite materials from the 
viewpoint of the elasticity of an anisotropic bodies. 
However, it is very difficult to have the analytical solu- 
tion for the anisotropic bodies. 

In the previous papers [3,4], we have investigated 
the failure behavior of CFRP cross-ply laminates under 
thermal loading. We proposed a new model of aniso- 
tropic plies in the theoretical analysis of the transverse 
ply-cracking in the cross-ply laminates. A simplified 
method with this model could express the effects of 
elastic constants of anisotropic plies and their configu- 
rations. By using the simplified method, we discussed 
the extension of the transverse cracks [3] and their mul- 
tiplication [4] in the plies of laminates under thermal 
loading and the thermal stresses around them. This 
method could reduce mathematical intricacies of the 
problem. 

In this report, the finite element method analysis 
(FEM analysis) is applied to the problem of transverse 
ply cracking in the outer ply of CFRP cross-ply lami- 
nates under uniform thermal loading. FEM program 
MARC K5.2 and Pre/Post-processor MENTAT II 
ver. 1.2 are used in this study. Making a comparison 
between the result of FEM analysis and that of our sim- 
plified method, we discuss the application of our sim- 
plified method to the transverse ply cracking in the 
laminates in the case that the laminates have various 
values of elastic constants of plies and various configu- 
rations. By considering the assumption of our model of 
anisotropic plies, we clarify the application limit of our 
simplified method to the transverse ply cracking in the 
laminates. 

Fig. 1. CFRP cross-ply laminates and three mutually 
perpendicular planes of material symmetry. 
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Fig. 2. A transverve crack from the surface of an 
outer ply and coordinate system. 

2. Formulation of the Problem and 
Boundary Conditions 

Consider the thermal stresses around an edge 
crack parallel to the fibres in the outer transverse ply of 
the laminate [9070790°]s under uniform thermal load- 
ing (Fig. 2). The transverse plies I and II treated here 
are assumed to be homogeneous and transverse isotro- 
pic and to obey the Duhamel-Neumann relation. The 
longitudinal ply * is homogeneous and orthotropic. 
The transverse plies are perfectly bonded to the longitu- 
dinal ply. The crack of length a is perpendicular to the" 
fibres in longitudinal ply. In the analysis, a rectangular 
coordinate system is employed as shown in Fig. 2. The 
symmetry condition of the problem will be used. 

The boundary conditions of this problem can be 
written as follows: 

(i) From the condition for stresses on the surface 
of the edge crack C, 

fftf + 'V=0     (x = 0, -a<>-<0).        (1 

In what follows, the subscripts I and II refer to quanti- 
ties associated with the transverse plies I and Ü, respec- 
tively. 

(ii) Since the edge surface of the outer transverse 
ply I is free from tractions, this condition gives 

<Ty + »T„ = 0-    (y = 0). 
(2) 

(iii) Considering the symmetry condition of the 
problem, we obtain 

(iv) From the continuity condition for stresses and 
displacements on the interface between the ply I and the 
longitudinal ply *, we obtain 

^ + iV=^+,'V (4) 
ui>* +'v/>x = «..,+' v.„   (y = -£). 

The asterisk will refer to quantities associated with the 
longitudinal ply. 

1 f T 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 
SS SS SSK8SS SSS8SS *JK ss*s «Sf&üsssisassssssss;« »55S5SJSSS; 

^ 111 si ^ 111 ü ^ ÜIIW iill H 
SSKS! »* «» 8=SSS3SisSsSSa SSSSSSSSüasSSSSiKiSSSSSSSSSäSSS! 

.1. -Li. | 1 -L J.. 1. .1. 1. 1 J. ± J -L 1 J. JL 

Fig.3. An example of finite element model. 

Table 1. Mechanical Properties of CFRP Laminates [5]. 

Longitudinal modulus, E„ 
Transverse modulus, E^ 
In-plane shear modulus, G12 
Transverse shear modulus, G^ 
In-plane Poisson's ratio, v]2 
Out-plane Poisson's ratio, v^ 
Coefficient of thermal expansion, a, 
Coefficient of thermal expansion, a. 

138 GPa 
11.7 GPa 
4.56 GPa 
4.18 GPa 
0.29 
0.4 
0.09xl0^K-' 
28.8x10-« K-1 

(v) On the interface between the ply II and the 
longitudinal ply *, 

"//>* +' vir>* = u.,x +iv.,x   (y = -(t + h)). 
(5) 

(vi) When the composite is subject to a constant 
increment of temperature AT, we have 

(6) T(x,y) = 0      (r = 0) 
7X*,y) = Ar   (t>0) 

In this case, there is no difference in temperature be 
tween two points on the different crack surfaces. 

3. Finite Element Analysis 

In the plane strain condition, the FEM analysis is 
applied to the problem of transverse ply cracking in the 
outer ply of CFRP cross-ply laminates under uniform 
thermal loading. Considering the symmetry condition 
of the problem, we set up the finite element model for 
the region (x g 0) in Fig. 2. The plate of CFRP lami- 
nate is divided into 513 eight-node quadrilateral ele- 
ments. Fig. 3 shows an example of finite element 
model of the CFRP laminate. The total number of the 
nodes is 1800. This analysis is performed by the FEM 
program MARC K5.2 and Pre/Post-processor 
MENTAT liver. 1.2. 

The unsteady heat conduction analysis is carried 
out under the temperature condition as follows: 

T;=0 (r = 0) 
7Xx,0) = A7\ T(x,-(£+h + d)) = AT   (f>0) 

(7) 
Viewing the reference [5], the mechanical proper- 

ties of the laminate are assumed as shown in Table 1. 
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4. A Simplified Method 

We have investigated the failure behavior of 
CFRP cross-ply laminates under thermal loading by 
using a new model of anisotropic plies [3, 4]. This 
model could express the effects of elastic constants of 
anisotropic plies and their configurations. By using the 
simplified method, we discussed the extension of the 
transverse cracks and their multiplication in the plies of 
laminates under thermal loading and the thermal 
stresses around them. Here we will show a summary of 
this simplified method. 

Let us consider the continuity conditions for 
stresses and displacements on the interfaces between 
the transverse plies and the longitudinal ply. The 
component of the displacement u. in the longitudinal 
ply is supposed to be uniform through the thickness, 
when the constant thickness of the longitudinal ply h is 
small. Therefore, the continuity conditions for 
displacements on the interface between the transverse 
plies and the longitudinal ply give 

du, _ du. 
dx     ox " ax ' 

dvL=dvJL 

dx      ax 
(8) 

Moreover, from the continuity condition for 
stresses on the interface, we obtain 

°yl=°y.-- =<v (9) 
The equilibrium of the force due to cx. and the 

tangential force acting on the interface of the thin 
reinforced phase yields 

*T,1  ~ ^T/U - = 0 (10) 

Let us try to transform Equations (10) in the plain 
strain condition, the constitutive equations for the 
orthotropic longitudinal ply are given by 

du. dv. 
^.=cu^ + c12 —, 

du. 
dx 

■ + Cr. 
dv. 

(ii) 
Here c.. are elastic constants of the longitudinal ply. 
From the constitutive equations for the transverse plies, 
we obtain 

du, _l-v2 

o\,- 
v(l + v) (12) 

dx        E      " E 
where E is Young's modulus in the transverse ply and. 
v Poisson's ratio. 

In view of Equations (8),(9) and (12), eliminating 
dv.ldy from (11) and substituting it into (10), it follows 
that 

daa        do, 
= 0 

where 

p2=h c„ — 
1-22 

l-vz 

E 

v(l + v) 
E 

(13) 

(14) 

Consequently, the continuity conditions for 
displacements and stresses on the interface of the thin 
longitudinal ply give Equations (8), (9) and (13) instead 
of Equations (4) and (5). Here it should be noted that 
the problem reduces to the two phases problem of the 
regions of the plies I and n. 

Following Muskhelishvili [6], the stresses and the 
displacement gradients can be expressed, in the absence 
of body forces, in terms of the temperature potential 
functions 8(z) and the elastic potential function <E>(z) 
and^z): 

<7,;=2{<t>.(Z) + <i>,(Z)} 

(15) 

^(B,,I+fr,,x) = (3-4v)*j(z)-*/z)-**J(z) 

-Wfij + Eae+z) 0 = i,n) 
where a is the coefficient of thermal expansion. 

To find the solution, the edge dislocation will be 
distributed continuously along the cracks C. By paying 
attention to the behavior of the temperature potential 
function at infinity, we have the potential functions 
6,(z), <t>,(z) and «F,(z) of the ply I [3]. 

0,(2)=Ar 

- f* {A(m) exp[wi(z + is)] + S(m)exp[ - im(z - is)tydm \ds 

IW      1 + v      4ft(l-v)J°  K\z + is   (z + is) 

+J" |[C(m) - i'mzA(m)] exp[/m(z + is)] 

+ [D(m) + imzB(m)] exp[-i'm(z - £s)]}<frn \ds 

(16) 

where 

s = -a&T- 

a. 1-— 
a k=- 

Ev 

1 + £+dA + 2/£'       (l+v)(l-2v) :• f = 2(1+v) 

(17) 
where e is the elastic strain in the transverse ply I when 
the composite is subject to a constant increment of tem- 
perature AT. $j(z) and ^(z) include the terms of a 
density function of edge dislocation b(s) distributed 
along C. Substituting the potential functions into the 
boundary condition (1), we obtain a set of singular inte- 
gral equations for the dislocation density function. 

The density function b(s) is assumed in the form 
of the product of an unknown function g(s/a) and the 
weight function of Jacobi polynomials [3,7]. Once the 
unknown g(s/a) has been determined from the singular 
integral equation, the stress intensity factor and the 
stresses along the interface and in the transverse ply are 
obtained in terms of g(s/a) by substituting Equation 
(16) into (15). 

The stress intensity factor for the opening mode at 
the tip of the transverse crack C is expressed in the form 

K1(-a) = ccAT4rtg{l) (18) 
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5. Numerical Calculations and Results 

The FEM analysis is applied to the problem of 
transverse ply cracking in the outer ply of CFRP cross- 
ply laminates under uniform thermal loading. 
Numerical calculations are performed for the stress 
intensity factor of the transverse crack in the outer 
transverse ply. In this case we introduce the following 
non-dimensional parameter I" relating to the stiffness 
of the longitudinal ply: 

e 11 
(19) 

The results are plotted in terms of the geometrical pa- 
rameters and the T. The ratio of the thickness of the 
transverse ply II to that of the ply I d/£ is 1.0. 

Making a comparison between the results of FEM 
analysis and that of our simplified method, we will 
discuss the application of our simplified method to the 
transverse ply cracking in the laminates . 

The values of stress intensity factor at the crack 
tip are shown in Table 2. It is found that the stress 
intensity factors Kt of the simplified method are in good 
agreement with the K, of FEM analysis when the 
adjacent longitudinal ply is thin, and the ratio of the 
elastic constant in the fibre direction of the longitudinal 

ply to the Lam6 constant of the outer ply cnl\x. is large. 
In tha case that the longitudinal ply is somewhat thick 
and the ratio of the elastic constant is small, the 
quantitative agreement between two methods is not 
good. 

Let us consider the assumption of the model of 
anisotropic plies. We made the assumption that the 
component of the displacement u, in the longitudinal 
ply is supposed to be uniform through the thickness 
when the constant thickness of the longitudinal ply h is 
small. Therefore, our simplified method is applicable 
to the transverse ply cracking in the laminates in the 
case that the adjacent longitudinal ply is thin, and the 
ratio cu/\i is large. 

From the numerical calculations by the simplified 
method, the variation of the stress intensity factor J? at 
the tip of the transverse crack C is shown versus the 
ratio of crack length a/£ for T= 10 in Fig. 4. As the 
value of af£ increases, the stress intensity factor Kx 

increases gradually, taking the extreme value, and then 
tends to zero at a/£=l. The short-dashed line indi- 
cates the K} when the longitudinal ply is isotropic. It 
can be recognized from this figure that the J5T takes 
larger values than that in the case of the orthotropic ply. 
We understand from another calculation that the factor 
K, increases as 7* increases. 

Table 2. Stress intensity factors (T = 10 and a/£ = 0.8). 

h/£     cn/u FEM  Simplified Method 

0.1 100 0.41 0.412 
0.3 33 0.41 0.412 
0.5 20 0.39 0.412 
1.0 10 0.35 0.412 

0.0       02       0.4       0.6       0.8       1.0 
all 

Fig. 4. Stress intensity factors versus crack length 
(T=10). 

References 

(1) Adams, D. S., Bowles, D. E. and Herakovich, C. 
T., "Thermally Induced Transverse Cracking in 
Graphite-Epoxy Cross-Ply Laminate," Journal of 
Reinforced Plastics and Composites, Vol. 5, 
p.152,1986. 

(2) Hull, D., An Introduction to Composite Materi- 
als, Cambridge University Press, Cambridge, 
1981. 

(3) Ozawa, Y., Haraguchi, S., and Sugiura, K., "Ply 
Cracking in the Longitudinal and Transverse Plies 
of CFRP Laminates Under Thermal Loading," The 
72th JSME Fall Annual Meeting No. 940-30, p.166, 
1994. (in Japanese) 

(4) Ozawa, Y., Sugiura, K. and Noguchi, K., "Ply 
Cracking in the Outer and Inner Plies of CFRP 
Laminates Under Thermal Loading," Thermal 
Stresses '97, in Rochester, (1997-6). 

(5) Han, Y. M., Hahn, H. T. and Croman, R. B., "A 
Simplified Analysis of Transverse Ply Cracking 
in Cross-Ply Laminates," Composites Science 
and Technology, Vol. 23, p. 165,1988. 

(6) Muskhelishvili, N. I., Some Basic Problems of 
the Mathematical Theory of Elasticity, 4th Edn., 
P. Noordhoff, Groningen, 1963. 

(7) Erdogan, F., Mechanics Today Vol. 4, Nemat- 
Nasser, S., ed., Pergamon Press, p.l, 1978. 

176 



Thermomechanical Fatigue of Metal Matrix Composites 

Zhanjun Gao 

Eastman Kodak Company, 1669 Lake Avenue, Rochester, NY 14652-4333 

The damage of metal matrix composites under a general thermomechanical fatigue is 
considered. A criterion to determine the stiffness reduction is established. It is shown that the 
characteristic damage state of the materials is related directly to the most damaging loading 
level at which the combined load and temperature yield the maximum stress-strength ratio 
during cycling. Stiffness reduction of metal matrix composite materials are predicted for room 
temperature as well as in-phase and out-of-phase fatigue. 

Key Words: Damage, stiffness reduction, thermomechanical fatigue, metal matrix composites 

Stiffness Reduction 

Today, metal matrix composites are being 
considered for a variety of applications in high 
temperature and aggressive environmental 
conditions. In this paper, an analytical model is 
presented for predicting fatigue damage of metal 
matrix composite laminates in terms of stiffness 
reduction under a general nonisothermal fatigue. 

The damage accumulation and stress re- 
distribution of a laminate depend on 
micromechanical properties, including properties of 
fibers, matrix, interface, etc. Johnson et al. [1] 
studied the stiffness reduction for [0/90]~ lay-ups 
of a SCS-6/Ti-15-3 laminate, and showed the 
elastic modulus dropped about 78% during the first 
few cycles, then remained almost constant until just 
before the final failure. Reifsnider [2] investigated 
the spacing between cracks in the -45 plies of a 
[0/90/±45]s AS-3501-5 graphite epoxy laminate 
as a function of quasi-static load level and cycles of 
loading. He found that matrix cracks developed 
quite early in the life and quickly stabilized to a 
very nearly constant level with a fixed spacing for 
both quasi-static and cyclic loading. The crack 
patterns for both quasi-static and cyclic loading 
were essentially identical, regardless of load 
history. This indicates that the load re-distribution 
for such a laminate occurs only during the first part 
of the loading cycles. After these cycles, the 
damage in the laminate reaches a stable level, 
called characteristic damage state (CDS) 
(Reifsnider, [2]). Reifsnider [2] pointed out that the 
CDS is completely defined by the properties of 
fiber, matrix, interface and fiber orientations, etc., 
and is independent of loading history. A scrutiny by 
the current authors on the numerous data from Neu 

[3] on stiffness change for titanium matrix 
composite laminates ([0L, [0/90] and 
[0/+45/90] ) at different thermomechanical 
fatigue loading also suggests that the existence of 
CDS. 

Room Temperature Fatigue 

Since the stiffness of the laminate at the 
CDS level is a characteristic material property of 
the laminate, and independent of loading history, it 
is to our advantage to determine the stiffness 
reduction under a static loading condition. 

After the damage initiation, the transverse 
O O 

normal stress in the 90 plies, c22 (°f 90 ) in a 
cross-ply laminate, is not completely relaxed. 
Instead, it is necessary that this stress remains at a 
level equal to transverse strength Y so that 
additional damage can be accumulated up to the 
CDS level. Thus, the reduced modulus E2 in the 
90 plies can be approximately obtained by solving 
the equation 

c22(of90°) = Y. (1) 

The algorithm is as follows: 
(1) For an applied static load exceeds the 

level at which damage in the 90 plies begins to 
initiate, let all the elastic parameters of the 0 plies 
be the initial values. The current stiffness, E2, of 
the 90 plies is reduced by an amount of 
dE2=0.001E2. Other parameters, Ej, G12, vJ2 

remain their initial values. Stress distributions in 
each ply are obtained through a laminate analysis. 

(2) If the stress c22 (of 90°) is larger than 
Y, repeat the first step until the Eqn. (1) is satisfied. 
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(3) The final reduced value of E- of the 
o Z 

90 plies is then used to obtain the extensional 
stiffness of the laminate. 

When the static applied load is equal to the 
value of the ultimate tensile strength (UTS) of the 
laminate, the maximum possible stiffness reduction 
is reached since any load level above UTS causes 
immediate fracture of the laminate. Therefore, the 
characteristic stiffness are found from the above 
scheme at the static load level equal to UTS. 

Figure 4 shows the stiffness reduction 
analysis using the above procedure for a SCS-6/Ti- 
15-3 laminate with [0/90]2 lay-ups at room 
temperature. Before the load reaches the level of 
500 MPa, E2 of the 90° plies and therefore, the 
axial stiffness of the laminate remain unchanged, 
and the stress-strength ratio, a (of 0 ) IX, of the 
0 plies increases linearly. Then with further 
increase of the applied load, the stiffness E0 of the 
90 plies is sharply reduced and results in the 
reduction of the axial stiffness of the laminate. 
When the load approaches the ultimate tensile 
strength (UTS) level, the stress-strength ratio, a 

o o X 
(of 0 ) /X, of the 0 plies approaches 1, indicating 
the 0 plies are about to fracture. The axial 
stiffness of the laminate approaches a characteristic 
value, Ex=Exc. 

The characteristic stiffness, E , can be 
approximately obtained as the stiffness value 
corresponding to applied load equal to the ultimate 
tensile strength, which is 944 MPa for the laminate. 
The predicted value of E is equal to 76% of the 
initial axial stiffness. The prediction agrees with 
experimental data of Johnson et al. [1]. The lamina 
material properties used in the calculations of Fig. 4 
are given in [4]. Similar procedure can be 
established for [02/±45]s and [0/90/±45] 
laminates [4]. 

In-phase Fatigue 

During the in-phase fatigue, the 
temperature changes from 150 C to 650 C at the 
same frequency with the applied mechanical load. 
The maximum mechanical load occurs at maximum 
temperature, 650 C. The equation to determine the 
stiffness reduction of the 90 plies in the cross-ply 
laminate, Eqn. (1), is written as 

c22(of90) = Y(Tmax) (2) 

where Y(T_av) = 227 MPa, is the strength of the 
90 plies in the transverse direction at T = T = 
650 C. The reduced axial stiffness after initial 
damage is predicted to be 107.2 GPa using Eqn. (2) 
with UTS = 637 MPa at 650 °C. 

Out-of-Phase Fatigue 

The maximum and minimum temperatures 
for the out-of-phase fatigue, Fig. 2, remain the 
same as those of the in-phase fatigue, i.e., T      = n n max 
650 UC and T  .   = 150 UC. For the out-of-phase min r 

fatigue, since the maximum load occurs at the 
minimum temperature, T^ = 150 C, the stiffness 
reduction is determined from the equation 

a22(of90°) = YCrmin) (3) 

where Y(T^) = 380 MPa is the transverse tensile 
strength of the unidirectional laminates at 150 °C. 
The reduced axial stiffness after initial damage is 
predicted to be 141.26 GPa. 

General Thennomechanical Fatigue 

In a general thermomechanical loading for 
which both temperature and applied load change 
periodically, but not obeying in-phase or out-of- 
phase pattern, the temperature and load levels 
suitable for the determination of stiffness reduction 
are not that obvious. In general, the stiffness 
reduction is directly related to the most damaging 
state of stress at which the stress-strength ratio is 
maximum. The stress-strength ratio indicates how 
close the materials is to failure. A value of the 
stress-strength ratio closer to 1 suggests a more 
severe damage than that of much less than 1. When 
the ratio is equal to 1, complete fracture occurs. 
Examining the equations used in stiffness reduction 
for room temperature as well as in-phase and out- 
of-phase fatigue, it is clear that in each case, the 
load and temperature level used give the maximum 
stress-strength ratio in the cycles. For room 
temperature (or isothermal fatigue) the strength of 
the material is constant, and therefore, the 
maximum stress to stiffness ratios occurs at 
maximum applied load. For in-phase fatigue, the 
strength of the material decreases as temperature 
increases. Therefore, the maximum stress-strength 
ratio is obtained at the maximum applied load at 
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which the temperature is the highest and the 
strength is the lowest. For an out-phase fatigue, Fig. 
2, however, when the applied load reaches its 
maximum value, the temperature is lowest, and the 
strength is also maximum. It is not clear whether 
the maximum stress-strength ratio occurs at the 
maximum applied load. This needs to be verified 
from calculation of the stress-strength ratio in the 
entire cycle. As shown in Fig. 3, as the stress in the 
90 plies increases from 0 to its maximum, the 
transverse strength of the composite also increases 
as a result of the temperature drop. Although Fig. 4 
show the maximum stress-strength ratio also occurs 
at the maximum applied load for the metal matrix 
composite considered, this should be taken with 
caution. It is quite possible that for a different 
material, the strength curve in Fig. 3 is more steep 
so that the maximum stress-strength ratio occurs at 
a location where the applied stress is not maximum. 
In a general thermomechanical fatigue, the stiffness 
reduction should be determined by 

O 

o~2 (of 90 ) at the load level of maximum stress- 
strength ratio 
= Y at the temperature corresponding to the load 
level of maximum stress-strength ratio (4) 

The maximum applied stress, together 
with the associated temperature, represents a 
critical state of loading, of the fatigue process. This 
critical state of loading dictates a unique state of 
damage represented by stiffness reduction of the 
off-axis plies of the total laminate. 

Concluding Remarks 

An analytical model has been presented to 
predict fatigue damage of metal matrix laminates 
containing off-axis plies under general isothermal 
and nonisothermal fatigue loading. For the room 
temperature fatigue, in-phase and out-of-phase 
fatigue considered, the maximum applied stress, 
together with the associated temperature, represents 
the most "damaging" thermomechanical loading, 
called the critical state of loading, during fatigue. 
This state of loading dictates a unique state of 
damage represented by stiffness reduction of the 
off-axis plies of the total laminate. After first few 
cycles, further damage is dominated by the 0 plies 
of the laminate. In a general nonisothermal fatigue, 

the stiffness reduction is determined by the load 
and temperature levels which give the maximum 
stress-strength ratio as shown in Eqn. (4). The 
stiffness reduction formulations, Eqns. (1) - (3) for 
room temperature, in-phase and out-of-phase 
fatigue can be considered as special cases of Eqn. 
(4). 

The new concept of the critical state of 
loading suggests that what matters most is the 
maximum applied stress and related temperature, 
which is the most damaging state of loading. From 
this point of view, the differences between in-phase 
and out-of-phase fatigue reported are not the results 
of phase lags between the thermal and mechanical 
loading, but rather the consequences of temperature 
difference at the maximum applied stress. For 
instance, the damage mechanism of the out-of- 
phase fatigue with T • =150 C should be r ° min 
basically the same as the isothermal fatigue at 150 

C. At the temperature of 150 C, the matrix 
material is relatively brittle, and the yield stress of 
the matrix is higher than that needed for the 
formation of matrix cracks. The damage 
mechanisms for both out-of-phase and isothermal 
fatigue are matrix cracking. On the other hand, If 
the minimum temperature for the out-of-phase 
fatigue, T^, is relatively high, (e.g., Tmm=550 
C, Tmax=650 C), the damage will be fiber 

dominated similar to the in-phase fatigue with the 
same temperature range. This is because at 550 C, 
the matrix material is relatively ductile with a 
relatively lower yield strength. Matrix yielding 
occurs before matrix cracks are formed. The fiber 
strain in this case is much higher to keep up with 
the viscoplastic deformation in the matrix material, 
which causes fiber fracture. 

The above observation is very important 
for engineering applications where the loading 
pattern in general is neither in-phase nor out-of- 
phase. However, the critical state of loading, which 
may or may not occur at the maximum applied 
stress, will play an important role in determining 
the dominated damage modes and fatigue life of the 
composite laminates. 
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Fig. 1. Stiffness reduction and stress redistribution of 
the [0/90]^ laminate under a static loading. 
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Fig. 2. Load and temperature in the out-of-phase 
fatigue. 

Fig. 4. Stress-strength ratio of the 90 ° plies in the 
out-of-phase fatigue. 
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A problem of the stress-strain state of structural elements of anisotropic composite materials 
(CM's) was solved considering distribution of physical and mechanical characteristics obtained on a 
unique equipment designed and manufactured for the purpose at the Institute for Problems of 
Strength; it allows us to simulate real working conditions for an object of study. Computations of the 
stress-strain state of high temperature structural elements involve some data on properties of 
materials not only in relation to the temperature but also in duration of thermal load application, a 
character of heat conveyance, material anisotropy, chemical composition, and nature of a gas 
medium. We obtained some distributions of tangential {rs&, rn) stresses in length and in width of a 
cylindrical heat-proof coating made of a carbon-filled reinforced plastic (CFRP); the coating is 
designed to meet conditions of re-entry of aircraft. 

Key Words: Thermal Stress, Composite Material, Heat Deformation, Anisotropy, Heat-Proof Coatings 

1. Introduction 

A specific feature in the behavior of heat- 
protective polymeric composite materials (CMs) at 
high temperatures is a considerable dependence of 
their physical and mechanical properties on duration 
of exposure to heat, and a character of heat 
conveyance. This dependence, related to thermal 
destruction of the CM binders, has to be considered 
when defining functional relationships between 
stresses and strains generated in the materials in 
heating. 

Deformation and fracture behavior of carbon 
CM's is characterized by an appreciable instability, 
particularly if they are exposed to a repetitive thermal 
loading (this is despite the fact that destructive 
processes in such materials are completed at the stage 
of fabrication). 

Here we consider some aspects associated with 
determination of thermal stress state for laminated 
anisotropic hollow elastic bodies; we assume that they 
have a cylinder shape, nonuniform in thickness, and 
exposed to a uniform temperature field. A solution of 
such problems is required, in particular, when 
evaluating strength and load-carrying capacity of 
heat-protective coatings for high-temperature 
structures. 

2. Experimental methods and results 

One of the main processes in fracture mechanics 
of high-temperature CM's is thermal (shrinking) 
deformation. There is a strong relathionship between 
the coeeficient of thermal deformation and the whole 
spectrum of physical and mechanical characteristics 
of a material: elastisity modulus, E, tensile and 

compressive ultimate strengths, aM, a^, Poisson's 
ratio, etc. 

Fracture of a heat-proof coating might be caused 
by crumblimg, partial melting, errosive ablation, 
separation of some segments, and outer surface 
cracking. Frequently, cracking behavior is 
complicated due to the action of gas pressure 
generated as a result of pyrolysis of inner layers, local 
materal defects, etc. More often cracks propapte 
along formation lines of cylindrical or conic coatings 
and are caused by tensile stresses. Experimental study 
of thermal deformation and strength in reinforced 
plastics, with maximum allowance made for service 
conditions and data obtained for stress-state 
calculations of heat-proof structural components is 
justified by an urgent demand to improve thermal 
resistance and life time of a heat-proof coating for a 
space vehicle. 

To study how efficient a heat-proof coating 
made of a carbon-filled reinforced plastic (CFRP) we 
studied physical and mechanical characteristics of 
CFRP in conditions simulating real ones: varying 
temperature, heating rate, components and pressure 
of a gaseous medium. 

Temperature values in a layer of CFRP in a 
process of heating up and cooling down are shown on 
Fig. 1 (Severov [2]). Temperature was averaged over 
a thickness of an outer layer of the heat-proof coating, 

'[°Cl'/ 

Fig. 1. Temperature 
variation in heat- 
proof carbon-plastic 
coating in re-entry 
trajectory 

0   2O0   400   600  600   tOOO 
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To obtain reliable values of thernal deformation 
of the heat-proof coating CFRP samples were studied 
at different heating rates that do correspond to those 
m a re-entry path. Some characteristics of change of 
thermal deformation of a carbon plastic in neutral and 
in an oxidizing gaseous media are presented on Fig 2 
(Gracheva [3]). The figure shows that in the 
neutral 

Healing raic   !00°C/min 

stress-deformed   state   of elements   of heat-proof 
coatings operating in real conditions. 

T [CC| 

^y 

Fig. 2. Dependence of thermal deformation in 
carbon-plastic on heating rate in neutral (solid lines) 
and oxidizing (broken lines) atmospheres: (a)-along 

the warp, (b) - along the weft 

medium (solid lines) the intensity of deformation 
processes is different as compared to that of in the 
oxidizing one (dashed lines). In addition, one can see 
that the extremes on the expansion diagrams for 
specimens cut along the warp tend to increase in the 
neutral medium and to decrease in the oxidizing one. 

The change in the elasticity modulus of the 
carbon plastic depending on temperature (Fig. 3) was 
received in the neutral medium at a heating rate of 
100 degrees/min (Eskin [4]). 

Obtained experimental characteristics of 
changes in physical and in mechanical properties of 
the material are necessary to calculate parameters of a 

Fig. 3. 
Temperature 

dependence of 
Elasticity 
modulus: 

1 - in stretching 
2 - in bending 

3. Calculation of a thermal stressed state of a 
cylindrical construction element 

We consider a stress-deformed state of the 
construction element having a shape of a non- 
homogeneous anisotropic cylinder, and we employ a 
solution to a set of equations of an elasticity theory 
problem. Our method is based on using a combination 
of equations of elesticity theory, those of heat 
conductivity, and some numerical analysis. 

As initial equations of the three-dimensional 
problem, an equation of elasticity theory in the 
curvilinear system of coordinates a, ß, y is taken. 
There is one plane of elastic symmetry tangential at 
each point to a body surface y = const or 
perpendicular to the axis of rotation a = const. The 
Hook generalised law for the /-th layer (y,< y < «,., 
i-I N) has the form v.-r-K+i. 

/,/> = U,...,6, 

*-4 = Ks = btm = bim = 0, (m = 11,3,6) fory = const, 
bms =Ke = bSm = b6m =0,(m = U,3,4)/ora = const, 

Here' eL> e'ß, e;, <,, e;yt e^ are the strain 

tensor components, cr'a'. a' r' r' r' a«. 

the stress tensor components. Elastic constants b\ , 

coefficients of linear thermal expansion 
aa> aß, a\ in the directions a , ß , y, 

coefficients of temperature shift a ^, aj
ßy, or' are 

functions of the coordinate rthat makes it possible to 
take into account an arbitrary variability of material 
properties through the elastic cylinder thickness. 

Taking into consideration the equations of 
equilibrium, the expressions for deformations by 
displacements, the Hook law for a non-homogeneous 
anisotropic body the system of differential equations 
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for definition of the stress-deformed state of a 
laminated hollow body is received. 

The solution to the problem must satisfy 
conditions on the limiting surfaces y = y0, y = j^ and 
conditions of layers conjugation y = y{. In most cases 
there is a rigid conjugation when layers of the body 
are deformed without slipping and breaking off, the 
continuity conditions 
fulfilled for all <7 
conditions   can   be 

_ _>+/ a- = <jf, j = l,2,...,6 are 
components. Sometimes these 
violated   and   some   of  the 

:+; components of a' can break, i.e. aj & a} 
A rigid conjugation of layers for a non- 

homogeneous cylinder (cylindrical coordinate system 
z, 6, r) may be written for an i-th layer in the form 

— *■'*' 

(3) 

4n="f = J*' Jre=*+'re 

u'e-u'+'e 

The temperature field for the i-th layer of the 
cylinder is defined by the equation of heat 
conductivity which in cylindrical coordinate system 
is expressed by 

+ rKl 
&2 

K'o d2r 
de2 = o 

(4) 
where Kr = IC/r), Kz = Kx(r), Ke = Kf#) - the 
coefficients of heat conductivity acting, in the 
directions r, z, 6. It is assumed that thermal 
continuity conditions of layers over the entire surface 
of contact are fulfilled 

T = T r dr       r     a- (5) 

Further, we deal with the case when the butt- 
ends of the cylinder z = 0, z = / do not displace in 
their planes and are free from a normal load. Taking 
the resolving functions as basic ones we can 
formulate conditions on the limiting surfaces r = r<„r 
= rN and the interfaces of the layers r,; making 
transformations of the initial equations of elasticity 
(1) and equations of heat conductivity (4), performing 
separation of variables for each pair of £ and n values 

for the i-th layer we come to a following system 
(Pankratova [6]). 

/'=(/;',/2,•■•,/,') 

m,q = 1,2,. ..8 

Here ar - radial stress, xn rrff - tangential stresses, K„ 

"a ug - radial, axial, and circumference 
displacements, respectively, T - temperature, T - 
temperature gradient. 

The matrix elements Cj depend on mechanical 
characteristics of a layer of the material. Integration 
of Eqs (6) is done by means of a robust numerical 
method; it gives us a solution with a high degree of 
precision. Selection of basic values to formulate 
contact conditions for layer conjugation makes it 
possible to get solutions easily for a prescribed 
number of layers. 

Then we studied the stress-state of a heat-proof 
coating in the form of a hollow cylinder in a quasi- 
static setting using the method described above. In 
agreement with the prescribed experimental data 
relating to layer thickness, mechanical properties, and 
temperature field we broke the cylinder into separate 
layers [x-b iM] (i=l, 2,...,7) Specified characteristics in 
each of these layers are given by their own 
expressions 

T-A, + Br      v= Cf^o + CfijT + C^T* 

E<*C,+D,T      OrT^at+btT 
(7) 

being approximated by the initial data. Here E - 
modulus of elastisity, v - Poisson ratio, aT.- 
.coefficient of linear temperature expansion. 

Some results of the solution to the problem for 
maximum values of stresses r«, rrS in external 
(subjected to heating) layer (0^r<l0mm) are 
shown on Fig. 4. 

Fig. 4. Distribution of tangential 
stresses r,e and z„ through the 
thickness and along the length of a 
carbon-plastic cylindrical coating in 
re-entry trajectory: 

(a) Tt»max =55.54 MPa 
txgmin = - 115.36 Mpa 

(bj T„max - 45.66 Mpa 
Xnmin = - 37.01 MPa 
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Calculations for a thermo-stressed state is done 
for a hollow carbon-plastic cylinder of length L =340 
mm, radius of the mid-surface R - 90 mm, and the 
thickness r = 10 mm. Temperature field values are 
varied from a room temperature up to 1200°C (Fig. 
1). Elasticity modulus Ez = Eg (curve 1, Fig. 3), Er 

(curve 2, Fig. 3), and shear moduluses GzB = Gv = 
Gye. Coefficiencies of linear temperature expansion 
are determined from experimental data on thermal 
deformation : «^ (Fig. 2, a), ag (Fig. 2, b), Or 
(Borisenko [7]). 

Tangential stresses ^ and r„ vary through 
thickness of the cylinder according to some nonliner 
law (Fig. 4) These, stresses are considered to be the 
most dangerous ones for the integrity of a carbon- 
plastic heat-proof coating under heating it up from 
200to700°C. 

It is known (Gracheva [8]) that thermal 
destruction of phenol-phormaldehyde binder of the 
carbon-plastic occurs in this temperature range; as a 
consequence, there is an appreciable shrinkage 
deformation Due to thermal deformations of both 
signs tangential stresses develop in the material. In 
multiple heatings tangential stresses are conducive to 
acceleration of the destruction process; it takes place 
as a result of thermal destruction without application 
of external forces. 

plastic for conditions that simulate real ones for re- 
entry of aircraft into dense layers of the atmosphere. 
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Numerical Solutions of a Coupled Thermoelastic 
Interaction with Second Sound 

G. A. Harmain 
Dept. of Mechanical Eng., University of Victoria, Victoria, B. C, Canada V8W 3P6. 

Thermal and elastic waves resulting from a suddenly applied change in the normal stress 
and/or temperature at the surface of a cylindrical cavity in an unbounded isotropic medium, 
initially unstressed and at a uniform temperature are obtained using numerical methods. We 
consider two linear thermoelastic theories, which are governed by systems of hyperbolic partial 
differential equations and predict a finite speed of propagation of thermal effects (second sound). 

Key Words: Second Sound-Thermoelasticity-Method of Characteristics-MacCormack's Method. 

1    Introduction 
Several review papers on second sound have ap- 
peared recently in literature [1, 2, 3]. It is well 
known that if Fourier's Law for heat conduction 
is assumed along with the Principle of Local State, 
an infinite speed of propagation of thermal effects is 
predicted, consequently the theory is flawed. Sev- 
eral theories have been proposed which take into 
consideration the finite speed propagation of ther- 
mal signals. In this research two theories of sec- 
ond sound have been applied. We obtain the first 
theory, henceforth described as Theory 1 when 
Maxwell-Cattaneo Law replaces Fourier's Law of 
heat conduction. The following inequality 

q.gradT < 0, (1) 

where q and T are heat flux vector and temper- 
ature, respectively, follows from Clausius-Duhem 
inequality when the Principle of Local State is as- 
sumed, regardless of heat conduction law. The 
Clausius-Duhem inequality follows, in turn, from 
the Second Law of Thermodynamics when entropy 
flux is due solely to heat conduction [4]. However, 
inequality (1) may be violated for certain prob- 
lems when Theory 1 is adopted. The significance of 
this violation is investigated for the problem con- 
sidered. The second theory considered, henceforth 
described as Theory 2, is a linearized version of a 
theory proposed by Green and Lindsay [5]. This 
theory is not based on Principle of Local State and 
is thermodynamically consistent. 

Second sound theories involve one or more ther- 
mal relaxation times, for example Green and Lind- 
say's theory involves two relaxation times, and 
these relaxation times are assumed equal. Results 
are obtained for relaxation times representative of 
metals which are of the order of magnitude 10-11s. 

Two independent numerical schemes are used to 
obtain the solutions to these problems. The first 
scheme is based on application of method of char- 
acteristics and is discussed in detail in a recent ref- 
erence of Harmain et al, [6]. The second scheme 
is based on application of MacCormack's method 
which is a predictor-corrector type of scheme for so- 
lution of a system of hyperbolic equations. Numer- 
ical results are obtained from finite difference forms 
of the relations along the five families of the char- 
acteristics and from MacCormack's method. The 
method of characteristics indicates that there are 
two wave speeds one which is essentially mechanical 
and the other essentially thermal. It was found that 
MacCormack's method does not always give satis- 
factory results when thermal wave speed is greater 
than mechanical wave speed. 

The results indicate that, for the problem con- 
sidered, the stress and heat flux distributions pre- 
dicted for various theories are almost identical how- 
ever, the temperature distributions are significantly 
different for times of the order of magnitude of the 
relaxation time. The classical coupled thermoelas- 
tic theory is governed by a system of parabolic par- 
tial differential equations consequently the above 
numerical schemes are not applicable. 

We consider cylindrically symmetric longitudinal 
waves propagating from a cylindrical cavity, in an 
unbounded medium which is initially unstressed, 
at rest and at a uniform reference temperature To- 
Assuming a plane strain condition and we define a 
cylindrical polar coordinate system with the z-axis 
aligned with the longitudinal axis of the cylinder, 
r the radial distance from the axis, a is the cavity 
radius and 6 denotes the azimuthal angle. 
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The initial conditions for the problems are: 

<rr(r,O) = ^(r,O) = 0(r,O) = O, (2) 

where <xT and <r^ are the radial and circumferential 
stress components, respectively, and 6 = T — To, 
and T the temperature. Furthermore, we assume 
Y~ « 1. The boundary conditions for the first 
problem are: 

<rT(a,t) = o-oH^JiaJ) = 0, (3) 

where <ro is a constant, and Hi(t) is the unit step 
function. For the second problem, the boundary 
conditions are 

<rr(a,t) = 0, 

0(<M) = /(*)#! (i), (4) 

where/(i) = t6o/ti , and /(t) = 0<j for t >h, and 
0o « To is a constant. 

2    Governing Equations 
Equation of motion, with body forces neglected is, 

where p is the mass density, v is the particle veloc- 
ity in the radial direction. Furthermore, for both 
theories the non-trivial infinitesimal strain compo- 
nents are given by 

er = 
du 
dr' 

u 
r 

(6) 

(7) 

From time derivatives of Equations (6 and 7) we 
obtain the compatability equations, 

öeL_ dv    _ 
dt      Or    "    U' 

^--    =    0 
dt       r 

The constitutive equations are given by, 

cy = 2peT + A(er + e^) — Ka(6 + nrd). 

(8) 

(9) 

(10) 

c> = 2/ze* + A(er + e*) - Ka(6 + nrd).      (11) 

The energy equation is given by, 

pc(nr6 + 9) + Ka(er + e#)(T+ nr6) 

+7r + i = 0- or     r 
(12) 

where superposed dot denotes partial differentia- 
tion with respect to time, p and A are Lame's con- 
stants. K = (2///3 + A) is the bulk modulus, a is 
the volume coefficient of thermal expansion, r is 
the relaxation time and n = 0(1) for Theory 1(2), 
and c is the specific heat(per unit mass) at con- 
stant strain. It follows from the analysis given by 
Green and Lindsay [5], that Fourier's Law for heat 
conduction 

q = -kYr- (13) 

where k is the thermal conductivity, is valid for 
Theory 2, so that there is a further compatability 
equation 

dq__kd6_ 
dt~      dr' 

(14) 

The following nondimensionalization scheme has 
been introduced. 
f = T/T0,   6 = 6/%,   v = v/c0,   i=t/r, 
f = r/(c0r), cr = <rr/(2fi + A),d^ = <rr/(2/i + 
A), q = «/((2/i+A)co),   s = s/c,   K = A'/(2/x+A), 
ä  =   aTo, where s denotes the entropy,  CQ   = 
((2^ + A)/p)1/2. 
In nondimensionalized equations, a superposed 
dot denotes partial differentiation with respect to 
nondimensionalised time. Henceforth, unless, oth- 
erwise indicated, nondimensionalized quantities are 
used and the overbars are omitted for convenience. 
The wave speeds which appear later are nondimen- 
sionalized by dividing by c0. The governing equa- 
tions in the nondimensionalized form for the given 
nondimensionalization scheme is in matrix form as 
follows. 

er 0 0     0     0 -1 er 
e<t, 0 0     0     0      0 H 
9 + 0 0     0   M      0 9 
e 0 0   N     0     L 9 
V t -1 -P     0    F      0 V 

0 
v/r 

+ 9 
Lv/r 

= 0. 

-Q(er - e<j,)/r _ 

(15) 

Here the constants have the following meanings, 
F = aKTo/pcl, L = Ka/pc, M = kT0/(2ß + 
X)rcl, N = {2fx+X)/pcT0, P = X/pcl Q = 2ß/p4, 
£ = {FL)ll2 is the coupling coefficient of classical 
thermoelasticity. and r\ = (MN)1?2 is the uncou- 
pled thermal wave speed. The subscripts r and 
t with matrices denote partial derivatives of the 
quantities within matrices w.r.t subscripts. 
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The governing equations for Theory 2 axe 

" er 

H 
9 + 
6 
V t 

0 
0 
0 
0 

-1  -p 

+ 

0     0 0 
0     0 0 
0     0 M 
0   N 0 

0 F 

-1 ' " er 

0 e<t, 
0 9 
L 9 
0 V 

0 
—v/r 

0 
0 + Lt>/r 

-qG - Q(er - e+)/r _ 

= 0 

where G = aKc^r/k. 

(16) 

Similarly for Theory 2 the independent variables 
are 

PV = {er,e^,t),3,e}, (21) 

where 17, and W denote the independent variables 
in general for Theory 1 and Theory 2 respectively. 
The above systems of equations for Theory 1 can 
be expressed as: 

where H(U) and b(U) are functions of U. For 
this system, the implementation of MacCormack's 
method is for predictor step as: 

3    Methods of Solution 

3.1    Method of Characteristics 

The system of equations given above in Equation 
(15) represents the five families of characteristics in 
(r,t) plane. 

j=±Al,|=±A4=„,    (17) 

where, Ai, A2 are the wave speeds, and are 
given by, A(1) = {G + VG2 - AH) /2, A(2) = 
(G - y/G2 -4H) /2 where FL + MN + 1 = G and 
MN = H. The relations along the characteristics 
can be obtained using the procedure in Whitham 
[7] and are 

Ai 

f*££_£-n 
dt       r ~ U' 

(18) 

onf = 0. 

der dei .-1-.N dq 

-dT + p~dT~{Xi~Xi }TTt~ 
ld9 dv 

-(^-^-(Af-ljJ 

+ Q(er - e^yXj _ 
= 0, (19) 

onf =±A,- ,»€{1,2}. 

3.2    MacCormack's Method 
An alternative numerical method for solving hyper- 
bolic systems of partial differential equations was 
proposed by MacCormack [8] , which is a finite dif- 
ference predictor-corrector scheme. The indepen- 
dent variables for Theorv 1 are 

U = {er,e^,v,q, 9}, (20) 

Ujm+1) = U?- ^{J(üT+1) - H(U?)} - AR 
Mb(Up). (23) 

Similarly for corrector step the resulting equations 
are in the form, 

Ujm+1) = Ulf + U. (m+l) Ai 
-Tzim™')- Ar 

H(Up+1])} - Atb(UJm+1)). (24) 

The term U™ represents the finite difference ap- 
proximation for U at a grid point (1 + jAr, mAt). 
The superscript refers to an index of a discrete time 
step Ai, and the subscript refers to an index of dis- 
crete space step Ar. The overbar notation has been 
used to indicate the predictor components, and no- 
tation without any overbar indicates the corrector 
components. 

4    Discontinuity relations 
Since the above systems of equations are in con- 
servation form, the discontinuity relations, which 
relate the jumps in {er,v,q,9} for Theory 1, and 
{er,v,q,9} for Theory 2 can be obtained as per 
methodology given by Whitham [7]. The jump re- 
lations for Theory 1 are as follows, 

V[er] + [v] = 0, 

V[q] - M[9] = 0, 

V[9]-N[q}-L[v)=0, 

V[v] + [er] - F[9] = 0, 

(25) 

(26) 

(27) 

(28) 

where V is the velocity of the discontinuity and the 
brackets [ ] denote the jump of the enclosed quan- 
tity across a discontinuity. 
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Figure 1: The plot for temperature for relaxation 
time 8 * 10_12s for Theorv 1. 

Since linear theory is considered, the discontinu- 
ity velocities are given by V = ±Ai and V = ±A2, 
that is discontinuities travel along characteristics. 
A detailed discussion regarding stress and temper- 
ature discontinuities has been given by Achenbach 
[9]. Also, for material integrity, the radial displace- 
ment component is continuous, and hence [e$] = 0. 
These points also hold for Theory 2. 

5    Results 
Results   were   obtained   from   finite   difference 
schemes based on the method of characteristics 
and MacCormack's method for relaxation time r i= 
8.0*10-12s and for r = .5*10~12s for an aluminum 
alloy. The following property values, typical for an 
aluminium alloy have been used, 
* = 2nW/mK,     c = 946J/kgK, 
a = 7.7 * 10_5/A",     Co = 6198m/s, 
K = 68.6Gpa,     p - 27Q0kg/m3 

T0 = 29ZK. 
For this set of data the value of Ai and A2 are 1.0208 
and .51506 respectively for a relaxation value of 
8.0* 10_12$, 2.112581 and 0.99552 for a relaxation 
time of .5* 10-12s. 
The results indicate that two sets of discontinuities 
propagating along the slow and fast characteristics. 
When T) < (1 + (C)2)1^2 then fast wave is essentially 
mechanical, while for the cases rj > (l-)-(^)2)1/2 the 
fast wave is essentially thermal. Some of the results 
are presented in Figures 1 and 2, for Theory 1. 
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Wave Propagation In Thermoelastic Cylindrical Shell Containing Fluid 

A. Sarkisyan* 

c Department of Solid Mechanics, Yerevan State University, A. Mantikyan str. 1, Yerevan, 375049, ARMENIA 

The shell-fluid and shell-temperature systems are considered for solution of wave propagation 
problem in thermoelastic cylindrical shell containing ideal fluid: one-dimensional and two- 
dimensional. For these cases we get expressions for wave propagation velocity; numerical 
realization is done for these cases. The same problem is done taking into account unmoment 
consideration of problem for shell containing one-dimensional model of fluid as well as two- 
dimensional model. Results are compared Well-known Zhukovski's formula is generalized on case 
of presence of temperature field. 

Key Words: Wave Propagation, Shell, Thermall Stresses, Fluid. 

1.   Formulation of the problem and introduction 
of basic equations. 

2.   Shell containing two-dimensional model of 
fluid. 

We consider axis-symmetric wave propagation of 
infinitely long isotropic cylindrical shell (radius R, 
thickness h, density p, Young modulus E) containing 
ideal fluid with density po. Suppose that shell 
vibrations pass through thermo-delivery process 
which creates thermal stresses, i.e. we have thermal 
connected problem. Let temperature field within 
shell varies by the following way [1J: 

T=9i+ze2. 
Shell motion equations are known from [2] 

ar,    . a2- 
Sx 

(1) 

u 
= ph^r at2 

R + 1° 
a2 

—+P = ph 
w 

(2) 

ax2    R ' x° ax2 ' *   K" at2 

where P- fluid pressure, Tj, T2 -loads, T0 -initial 
loading of shell middle surface, u,w-displacements 
of middle surface. 
Taking into account expression (1) we have 
following thermoconductiviry equations [3] 

59,       529,     2k* 
 -_ y i-_|  
dt        dx2     c ph. 

G,+ 

+m 
a2 u     i aw 
a ax  R et 

dt —%• ox2 ■ + 
12x    6k* 

cpph 

(3) 

K~ 

~VX 
a3 w 

5x2at 
= o 

where % - thermoconductiviry coefficient, k*- 
coefficient of body surface thermochanging, Cp- unit 
thermocapacity, TI = (3Ä.+2u)<xT/Cppx, a-temperature 
expansion coefficient, X,\i - Lame' constants. 

For two-dimensional model of fluid we know from 
[4] following equations 

A<p=0, 
« 5cp 
p = Poät (4) 

where 9 -potential function, A - Laplas operator. 
We can introduce potential function by means of 
Bessel's functions [5]. Then introducing solution of 
thermoelasticity system (2)-(3) by means of 
exponential function, we get new representation of 
fluid pressure 

P = P0w0 
co2 I0(kR) 

exp(o)t-kx)   (5) 
k I,(kR) 

here w0 - unknown coefficient, Io(kR), Ii(kR) - 
Bessel's functions, k-wave number, o - frequency. 
For this general case we get sixth order dispersion 
equation. For case of absence of temperature field we 
get forth order dispersion equation. 

Table 1. Values for Bessel's functions. 
1/kR                 1 2 5 10 
Io(kR)/I,(kR)        2.24 4.12 10.05 20.02 

From following given quantities: pc/p = 0.94, 
Poisson coefficient v =0.3, To/Eh = 0.15 and from 
values of table 1 for h/R=l/20 dimensions shell in 
shell-fluid system for waves with small frequencies 

a2 
u 

( ~ZT =0) we have following representation (fig. 1): 
dt 
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V 

c 

1        T0       (kR)2 

[(kR)2    Eh    12(1 - v2) ^R. 

1 + Po Io(HR) 1 
(6) 

p I,(kR) kh 

where cME/p -is known Moense -Korteveg' formula 
[6]. 

1   23456789 10 

1/kR 

Figure 1. Shell containing two-dimensional model of 
fluid. 

Taking into account unmoment consideration of 
problem (M.I=T0=QT=0) we get fifth order dispersion 
equation. Analogously, the order of equation 
decreased in absence of temperature field till forth 
order, and for small frequencies waves (fig.2) by the 
same condition we get 
v 1 

(7) 

kRjl + 
P0I0(kR) 1 

p IjCkR) kh 

23456789 10 

1/kR 

Figure 2.  Shell containing two-dimensional model 
of fluid (unmoment consideration). 

As it is seen approximately there are no differences 
between these two cases. 

3.   Shell containing one-dimensional model of 
fluid. 

For one-dimensional  model  of fluid  there  are 
" following equations [7] 

1  SP    dv 

p0 öx    dt 

dv   _2öw_ 

Sx + R dt "° 

(8) 

Here we also get sixth order dispersion equation. In 
shell-fluid system we get forth order dispersion 

52u 
equation, and in this system in case of 

get (fig. 3) 
a2 =0 we 

11 + ^- (kR)2 

v      I     Ehv    J 

k4R2h2 

12(1-v2) 

(kR): 2pp_R 

P   h 

(9) 

Comparing figures 1 and 3 we can see that in case of 
wave propagation problem in shell containing one- 
dimensional model of fluid the velocity of wave 
propagation decreased while in case of two- 
dimensional model the velocity is increased. 

Figure 3. Shell containing one-dimensional model of 
fluid. 

0.2 j 

0.15 ■" 

0.1 -• 

0.05-- 

0-- H H -t 1 H H 1 

1    23456789  10 

1/kR 

For    the    same    problem   but    in    unmoment 
consideration we get (fig.4) 
V 1 

(10) 

(kR): 

0.2 
0.15 

0.1 -■ 
0.05-- 

0 

2p_p_R 

' p h 

H 1 h- ■H 1 1- H 

1 23456789 10 
1/kR 

Figure 4. Shell containing one-dimensional model of 
fluid (unmoment consideration). 

From figures 2 and 4 (in point of view of unmoment 
consideration problem) we can see that for two- 
dimensional models of fluid velocity increases while 
for one-dimensional velocity remains quasi-constant. 
Considering so called "dry" shell, i.e. wave 
propagation problem without any fluid, we indicate 
quasi-linear dependency (fig.5) 

v=   /    1 kah~ 

c    \(kR)2+12(l-v2) (11) 
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Figure 5. "Dry" shell. 

4. Shell-temperature system. 

We consider shell-temperature system taking into 
account unmoment consideration of problem. In case 

a2 

thermoelasticity equations the problem comes to 
following system: 

of smallness of inertia!  term  (~rj"=0),  from 

ST 

R+phlF=0' 
dQ1 _   d2Q,    2k* 
St    XSx2+cBphei + 

(12) 

+m 
d2u    J_Sw 

dt Sx   R a 
= 0, 

from which dispersion equation 
obtained: 

[l + (XT|x(l + v)]a)3-i 

E 

Xk2 + 
2k! 

cDph 
©2- 

pR: (l + 2aTix)ö) + 
Ei 

PR2 Xk2 + 
2k! 

V Cpph 
(13) 

= 0 

In case of absence of connection for frequencies we 
have 

Xk2 + 
2k* 

v c„ph 

(14) 

(l+anx(l + v)) 
Approach roots of this equation introduced in such 
form which takes into account smallness of thermal 
connection   (y\).   Then,   introducing   solution   of 
equation (13) in form 
(to-coi+ai) (co-K02+a2) (<D-a>3+a3) = 0 (15) 

where aj - small quantities which characterize 
smallness of connection. 
Comparing equation (13) with equation (15) for ai 
we get 

1  E ±--^2-anx(i-vXi+aTx(i+v)) 
*£\2 =7 —v  

2k* 1       E 
xk2+^  +-r7i(1+anx(1+v))2 

cpph;     pR 
(16) 

a3-image number characterized damping process. 
Therefore, we get expression for velocity of wave 
propagation in thermoelastic cylindrical shell 

1   H. 
v=± 

kRVp 

1 E 
^anpcCi-yKi+ctrrca+v)) 

XkV 
2k* 

.V 

Cpf*V 
+■ 
& 

(l+an)c(l+v))2 

(17) 

5. Zhukovski's formula in case of temperature 
field. 

Here we generalize well-known formula of pulse- 
wave velocity [6]. 
Supposing Ti=0 and 
T2 = Eh(w/R-ae,) (18) 
thermoconductivity equation in this case is 

S9,       S20,     2k* 
[1 + CXT^l + v)]-^ - %—± + -6, + 

dt    "OK2 c„ph 
(19) 

TIT Sw 

Considering blood as a one-dimensional model we 
have equations (8). 
Taking into account (18), shell motion equation will 
be 

Eh 
i s2w    s2e, 
RSx2 ■-a- 

Ox2 = 2p0 

S2w 

a2 (20) 

which in couple with thermoconductivity equation 
(19) is closed system from which we get cubic 
dispersion equation 

[l + aTix(l + v)]co3-i 

Ehk2 

f    2     2k*^ 
V Cpphy 

2 r 

©2- 

-ar (l-2aTixv) + 
Ehk2 

2p0R
v x"      2p0R 

In case of absence of connection 

,2      2k* 
Xk2+—  =0 

V CpPh/' 

(21) 
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03 1.2  = ±k. 
Eh 

2p0R 

Xk2 2k* 

cBph, 

(22) 

o, = 
(l + aiixO + v)) 

from which for wave propagation velocity 
c" =Eh/2poR. This formula is obtained in [6] and it is 
called Zhukovski's formula. 
Now let's introduce the roots of equation (21) in 
form   which   takes   into   account   smallness   of 
connection, i.e. in form (15). 
Analogously to previous case for wave propagation 
velocity in case of temperature field we get 

v=+ 
Ei 

|2ftR 
1- 

fflc 
OOTX(1+3VX1-KXTX(1+V)) 

w*—r 
Ehk2 

+—r(l+O0Tx(l+v))2 

SPty    3ftR 

which is well-known in biomechanics as a pulse 
wave propagation velocity. 
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Coupled Problem of a Thermoelastic Plate in Elliptical Shape 
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Coupled dynamic problem of a thermoelastic plate in elliptical shape due to a thermal shock on its 
surface is analyzed. By making use of the integral transform method the system of partial differential 
equations of the coupled problem is reduced to a system of integral equations regarding to time. The 
solutions are given in forms of series of Mathieu functions of first and second kind both for a free 
supported and a clamped plate. 

Key words: Elliptical Plate, Coupled Dynamic Problem, Thermoelasticity, Integral Transforms 

1. Introduction 

Rapid thermal processes, caused by a thermal 
shock, are very interesting from a view point of ther- 
moelasticity since they introduce coupling between 
the temperature and deformation fields. In solving 
contour two dimensional problems the integral 
transform method has many advantages over the 
method of separating the variables. At present, many 
transformations in a rectangular and a circular 
domain, for various kinds of boundary conditions 
have been developed [1], [2]. Coupled dynamic 
problems for a rectangular and circular plate have 
also been solved by Boley and Barber [3], Ignaczak 
and Nowacki [4], Kovalenko and Kamayukhov [5] 
and Cukic [6]. 

In most of the works on a circular plate boun- 
dary conditions are satisfied approximately - it is usu- 
ally assumed that V2w = Oon the contour. By taking 
into a consideration the coupling phenomenon, a fre- 
quency change of the vibrations has been found but 
that correction is far less than the error made by the 
simplification of the boundary conditions. In this 
paper it is found a solution of a coupled problem with 
exact boundary conditions. 

2. Basic equations 

The equations of the coupled dynamic problem 
of thermoelasticity for plates has the following nondi- 
mensional form [7]: 

V4w + a,-w + (1 + v) • V2
T = 0 

v2x-8-T-J-a,-T+Ti-ejV2w=-ä-0+       
(1) 

K
l 

©+(X1,X2,F) = 9(X,.X2)-h(F)   inthedomainof 

the ellipse Q = {(o <> X> < $r\(o < X1 < 2n)}, 

with   homogenous   initial   conditions   regarding 
w,T,6,-wand boundary conditions corresponding to 
a free supported (2,3) or clamped plate (2,4) 
w(Xl=%) = 0, 

«■„(*'«Ö = - 
-_   l-v f2  _   e2   sinh2AT'   ,_ 

(2) 

9,w- 

sin2JT  a_ 
 = 0{W -(1 + v). = 0 (3) 

-*•'=$ 

aiiT(X'=|) = 0, (4) 

T(X'=S)=0, (5) 

where X\X2 are elliptical coordinates, linked with 
the Cartezian coordinates with the following relations 
Z1 =e-coshX'-cosX2,   Z2 =e-sinhX' -sin*2 (6) 

V2 = — {dn +d22) - the Laplace differential operator, 
P 

3,=a/ar (; = L2),   V4=V2(V2),   | = Arcosh4 

p(X\X2) = — -(coshX'-cosJT2); e=-- nondi- •icosn^-cosj["i; 
2   v > a 

mensional eccentricity of the ellipse; a,b,e- the longer 
and shorter axes and the linear eccentricity of the 
ellipse; h(/) -the Heavyside function;The nondimens- 
ional variables are defined as follows:  w=w/a, 

ha) 
'2jJ' 

_       K      _    „       rr .     _    ,,*aa3 

i = tl(a1lK),   x = a,az,   Z = l2{alhf 1+ 

T] = '-^ 
      aM,, 1 + v 
M« = -^~ (U = U), e = KTl 

(l-V^K        »        D l-2v 

K = \/(p0cJ,K = Jpch>D,D = Eh3/(l2(l-v2j). 

The meaning of other constants is accordingly to [7]. 
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3. Transformation of the equations of the 
system 

The system of equations (1) is transformed 
by means of the Mathieu finite integral transform [8] 

?[f(X\X2);X\X2^m,n] = f2'n„ = \\f{X\X2)x 
0 0 

x ptr^Ct^XKq^ce^X^dX* dX2 

m=0,l,2,-      n=l,2,...    , (7) 
where ce^ , Ce^ are the Mathieu functions of first 
and second kind with even index [9]; q?mn (m=0,l,2.) 
is the n-th root of the transcendental equation 
Ct2m(Xi=S,q) = 0        m=0,l,2,... 

The inverse transformation is: 
?"' VL*\rn,n -» X1 ,X2) = f{Xx ,X2) = 

(8) 

GC       «0       f 
1 Jim ft 

= IIiTiLCe^(Xl
>g2)n,)ce2B(^

2
)^) ,  (9) 

m=0n=l "2mji 

«^M = JJpe* ,Wcfe*.(** liBKüCÜ d*'iXl (10) 

00 

Both the functions w and x ,when develo- 
ped into series in the form (9), satisfy identically the 
conditions of periodity, continuity and symmetry with 
regard to the ellipses axes. 

The Laplace transformation [10] is used for 
transformation the equations (1) from the time 
domain into the domain of the complex variable p 
and vice versa: 

*lf<foi-+ p) = ]e-p!f(t)dt = f'(p) (11) 

^-1[/'(/>);/>-»?] = ■£- \e*f\p)dp,i = J^i. 

By making application of the 
transformations (7), (11) onto the equations (1), 
taking into consideration the rules for transformation 
the derivatives [10], after inserting the initial and 
boundary conditions (2), (3), (4) we arrive at 

(/ + AJ^)^ -(1 +vjA^T-, =Ätal4
MfL 

>0 

A^^np^, +[/»+K1(A2„„ +8)JF£J1 =ÖK1-y
L (12) 

where: A2m,„ = 4q^ Ie2,S2m, = Ct'^X' = \,q^ 

A^"**  are coefficients in the series of Mathieu 
functions with even index: 

«^«.ft.,) = ILAST* cos2a. (13) 

Oj, is a finite cosine transform of the function 

®{x2,i) = V2w{xl=%,X2,i), 
2* 

02/ = \<S>(X2)-cos2iX2 dX2, i=0,l,2,      (14) 
o 

The transform <E. will be found later from the bo- 

undary condition (3) or (4). From the system (12) it 
follows immediately 

^ p-^(p) 

^—[p+K^A^ +8)]S2^£Ag**^ , (15) 
>lm*(P) 

-öic.^+AL^a^- 

Imji 

where 

P-^im^P) 

—'^^tAjt^** • (16) 

e,=(l + v)K,ii = (l-2v) 
1 + s 

IS the 

coefficient   of  coupling   between   the   fields   of 
temperature   and    de-    formations    for   plates; 

*lm*(P) = (P2 + h\m*\p + Kl{^lm* +»)]+«.A^ * 

«[V +Y2„J2 +^U.]-(/»+ß J, (17) 

*-2»w. = A 2n^> 1+- -"2».« (2m,n        M      2«,n^2m,n ' 

.2 
P—ii h      e rr ^ /T _     /Y2>a^r'2w,n 

2m^i ~ M'2m^^1 — slalmsi) > a2m^ —   . 2 ,      2        ' 
A2ra,B + V-2m/t 

^2^=^(A2^+8). (18) 

The approximate form for A2rv,(/>) is convenient for 

inversion of the Laplace transforms (15), (16). After 
applying the inverse transformations (8), (11) we ob- 
tain the deflection w and the temperature moment x 
in the geometrical-time domain: 

{x(xi,x2j)) hk 

(19) 

In the above equation /^(F).../^, are the 
following inverse Laplace transformations [11]: 

fZ(i) = ^ 

*£,<?)'** 

fZ(')=^ 

fZii) = ^ 

P^lm^P) 

P £ 
&m*',P-*t (20) 

If the thermal shock is induced under the ac- 
tion of uniform temperature field at the surface 
Z3=h/2 in the whole region of the plate than the 
transform S^ can be found as 

_      _ **! 

»l^'SoljpiX'^Ce^X'.q^ce^X^q^dX'dX* 
0 0 

(21) 
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4. Finding the function <£> 

The last boundary condition (3), after 
inserting equation (19/1), taking into account the 
boundary condition (3), becomes 

Lk,<D11(t)-lKM(t-e>i»11(e)del=gt(t) tsok = o,i... 2 
i-0 

(22) 
The kernels Kt,i and the functions & on 

right sides of the integral equations (22) are given in 
form of series 

«,    .    O Mm/,) Aim*) 

Kw<a-«as    -       >&<a» (23) 
w^ 

gt(J)=7M?2-2- ^T Jim* 
JB=0R=1 2m JI 

/£Uf)k,i=0,l,2..., 

where 
2(l-v) , ,„K a« =—Zj—sinh2|, and 

7l/2,i = Ö\ f      ,        1\    , 

fl*,= -cosh25,   |*-/| = 1 (24) 

1/4,   |*-i| = 2 
0   otherwise 

Similarly, in the case of a clamped plate, the 
boundary condition (4) leads us to a different kind of 
integral equation: 

£jKtJ(/-e)d)2J(e)de = -g4(r)> fso *=o,u... (25) 
1*0 0 

Kk,i and & have been previously defined (eq. (23)). 

5. Numerical example 

If we insignificantly sacrifice calculus 
accuracy, the systems (22) and (25) can be reduced 
to first several equations. It was observed that number 
of N= 3..6 equations was sufficient. The cosine 
transform <->2,(?) (i=0,l,..N) of the function 
0(^T2,F) = V2w| ,,   can be than found from these 

reduced systems. The deflection w and temperature 
momentum t in an arbitrary point (X],X2) of the 
plate at the given time t is calculated according to 
equation (19). 

On fig. 1. and 2. first N members of the 
transform fl>a(F) that correspond to a simply suppor- 
ted (N=2) and clamped plate (N=5) are shown. It is 
assumed the plate is made of brass, with longer axis 
a=0.5 m, thickness h=5 mm and relative eccentricity 
e=0.707 (|=0.85). The elastic and thermal properties 
of the material are given by the following 
coefficients: 
£ = L2.1011N/m2,    v = 0.42,    a, = 18.4-10-6K"1, 

po=8600kg/m3, 3i = 93W/(mK), a = 20W/(m2-K), 

K = 2.838-10-5m2/s, So=320K, r„ = 293K, 

£>=1518Nm,K=0.168s/m2, | = 0.85, 8 = 1.2-105, 

ä = 6452,:n = 1311,Öo=5.9-10"3,£ = 0.0558, 

K, = 4.53 • 10^, s, = 8.43-lO-3. 

0 

*«(*) 

0.6 

0.4 
) 
0.2 

0 

-0.2 

fig.l 
 1 1 1— 

/it    1 
/   1    Li \ 
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On fig. 3. and 4. the deflections in the 
middle of the plate (X1 =0,X2 =%I2)versus time 
are shown. On fig. 5., 6. deflections in one quarter of 
the elliptical region at the moment f = lare 
presented. 

The systems (22), (25) were numerically sol- 
ved. In all sumes in eq. (23) only eigenvalues 
qlm„ < 35 (A2m„ £ 280) were kept. The step of integ- 

ration depends on the frequency X^ » A^ » 280 
and it should not exceed AL„ = 02 ■ 2n I X„„ « 0.004 

6. Conclusion 

1. Involving the function <t>(X2,t)on the contour 
Xx - % is unnecessary in calculating x according to 
equation (19) (the error is less than 0.4%) . The func- 
tion $ exerts an influence both on the quantity and 
frequency of deflections (increasing the quantity by 
20% and decreasing the frequency of the fundamental 
mode by 11%, fig.3.). It means that the plate behaves 
less rigid at the exact solution. 

2. The coupling effect increases the frequency by the 
factor l+£]/2. This correction is. however, less than 
the error made when the function O and its cosine 
transform <J>2; are neglected in the equation (19). 

3. In the case of stationary temperature field, when 
i -> oo for example, the systems (22),(25) are redu- 
ced to systems of algebraic equations regarding <b2i. 

4. For the application of the described method it is 
sufficient to transform only the differential equations 
of the problem, leaving one or more boundary 
conditions unsatisfied. The solution obtained by 
inversion should be inserted into the remaining 
conditions so that they would be reduced to integral 
equations regarding some function on the contour 
(Q2i in this case). The method is rather universal and 
increases the flexibility of the integral transform 
method. 
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Analysis for^the propagation of free waves in homogenous anisotropic generalized thermoelastic 
plateisdeveloped. Secular equation for the monoclinic plate in closed form and isolate the mathematical 
7liTL! .Tmetn° a"^.antisysmetric ^ve mode propagation in completely separate terms is 
derived. Material systems of higher symmetry, such as orthotropic, transversely isotropic. cubic and 
isotropic are contained implicitly in the analysis. It is shown that the motion for SH modes decouple 
which is not effected by thermal variations from the rest of motion if propagation occurs along an in- 
plane axis of symmetry. Finally the numerical solution for a isotropic plate is carried out and the 
dispersion curves for symmetric and antisymmetric are presented by varing the relaxation time. 

Key Words. Anisotropie, media, Guided Wave, Thermal Relaxation time, Freeze, Thermoelasticity. 

antisymmetric wave mode propagation in completely 
separate terms. Materials system of higher symmetry, 
such as orthotropic, transversely isotropic, cubic and 
isotropic are contained imlicitly in the analysis. It has 
been found that SH wave which is not effected by 
temperature variations decoupled from the rest of 
motion if the propagation occurs along an in-plane axis 
of symmetry. The results in the case of coupled 
thermoelasticity can be obtained as special cases by 
setting T0 = 0 in the present analysis. Finally the 
numerical solution for a isotropic plate is carried out 
and the dispersion curves for symmetric and 
antisymmetric are presented by varing the relaxatin 

l.Introduction 
The study of thermoelastic wave propagation in 

anisotropic materials is of great practical use in 
engineering applications especially in the context of 
modified/generaliged theories of thermoelasticity. 

Recently, attempts have been made toextend this 
gengeraliged theory of thermoelasticity to anisotropic 
elastic media. Banerjee and Pao [1] investigated the 
propagation of plane harmonic waves in infinitely 
extented anisotropic solids, taking into account the 
thermal relaxation time. They showed that four 
characteristic wave speeds are possible in such types of 
solids. They further studied the velocity, slowness as 
well as the wave surfaces of the thermoelastic waves. 

Propagation of free guided waves in anisotropic 
homogeneous plate has been studied in detail by authors 
[2]-[4]. These studies provide an interesting picture of 
the rich dispersion characteristic of theseguided waves. 
Several others authors [5]-[l 1] have studied free Lamb 
waves. 

Propagation of plane harmonic waves in 
homogenous transversely isotropic heat conducting 
elastic materials has been investigated [12]-[13]. 
Recently, the generalized theory of thermoelasticity 
advanced by Lord and Shulman [14] has been extended 
to anisotropic elastic bodies by Dhaliwal and Sherief 
[15]. 

The present paper is aimed at to study the 
propagation of free thermoelastic waves in homogeneous 
anisotropic thermally conducting elastic plate. The 
analysis for waves to the monoclinic plate is carried to 
derive the secular equation in the closed form and i solate 
the mathematical condictions for symmetric and 

time x. 

2. Formulatin of the Problem 

Consider a homogeneous monoclinic thermally 
conducting elastic plate, having thcikness d, whose 
normal is aligned with the xj*- axis of a reference 

cartesian coordinate system ,/ = {x\,x2,x3). The 
midplane of the plate is chosen to coincide with the 

*i -X2 plane. With respect to this primed coordinate 
system, the equations of motion and heat conduction 
equation are [IS] 

a'y,j = P'»i ....(1) 

KgT'i-p'Ce'lf +T,OT) =T„ ßV(«',v + z'oü'ij) 
....(2) 

where 

°y = Cykle'u - ß'ifl; 
$ij = Cijuäu    /',/,£,/= 1,2,3 ....(3) 

« u is the thermal expansion tensor, K u is the 

thermal enductivity tensor, p\ CJ, and T5 are 
respectively the density the specific heat at constant 
strain,  and thermal relaxation time.   In the analysis 
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usual summatin convention holds. Thecomma notation 
is used for spatial derivatives and super posed dot for 
time differentials. 

Since a'jj, efo, ajy and Cfty are tensors and 
as here conducting analysis in the global x, coordinates, 
any orthogonal transformation oftheprined to the non- 
prined coordinates i.e. x{ tox, transforms according to 

C =y^y^y „^jki 
=y„ r- «i/ .-(4) 

where y# is the cosine of the angle between xj andx„ 

respectively. Forrotationofangle<j»inthe *', - x'2 plane, 
the transformation tensor y  reduces to 

yy = 

cos $    sin<|>   0 
-sin 4>   cos <j>   0 

0 0      1 
-(5) 

..(6) 
using (4) and (5) in (3) yields 

For monoclinic materials having x^ - x'2 as a plane of 
mirrorsymmetry, C.^C^C^C^C^C^C^ 

.(7) 
where the transformation relations between C and 
C'pq are as in [2]. 

In terms of the rotated coordinate system x(, the 
equations of motion and heat conduction transforms to 

°ÜfJ = PSi -(8) 
KijT.ij - pCe (f + T0 1")=^ (MIJ + T0«ij) 

••(9) 

3. Analysis 

Substituting from equation (6)-(7) into equation 
(8) and (9) results in a system of four coupled equations 
for the displacements Hj.aj.i^andtemperatureT. Since 
the plane wave propagation along the x, - direction is 
independent of x2, a formal solution for these 
displacements and temperature can be written as 
(«,, «2, uy T) = (1, V, W, S) e'«( x, + a x3- ct)  ...(10) 

where Jj is the wave number / = JZ{, c is the phase 
velocity ( = co/Jj), o is the circular frequency, a is still 
an unknown parameter, V, ^areratios of the displacement 
amplitudes of «2 and t/3 to that of w, , respectively and 
S is the ratio of temprature T to that of displacement 
amplitude uy Although solutions (10) are explicitly 
independence of x2, an implicit dependence is contained 
in the transformation and transverse displacement 
component is non-vanishing in equation (10). This 
choice of solutions leads to the four coupled equations. 

and 

W«WV,"° p.9= 1,2.3.4 ...(11) 
where the summation convention is implied,, 
Mv~ MJI 'V. = 1.23 are same as given in [2] 

M4J =/§T0c
1tp,  Ma-i§T0c«Tpt 

M«= '•4T0c?Tp3a 
M44= *i+ ^3 a2 - PC2 C t, T = T0 + i/(o ... (12) 

The system of equations (11) has non-trivial solution *f 
the determinant of the coefficients of U,,U2,U3 and U4 

vanishes, which leads to the eighth degree polynomial 
equation 

a» + A,as + Ajx6 + Ajx< + A4 = 0 ...(13) 
where 

Ax =  [-*34+A'a+(Cj-CkC55)&ß§]/A 

A2=[-K3Ai+AiQl 

- { ( C„ CM- 2C,6 C45 + C55 CJ-{CM + C5S)P3' 
+ C„C„K+CBCMfi* 
~ ( 2C» C« - C» C„ + 2 CM C55 - CJ) P,P3 

-(2CMC45-2CwC<5)P,P4}ß2]/A. 
A2=\-KZA^AiQy.  K^Q+C^-^Q 

+ C(MCJ,+ C4J*-<CM+C45)pr,)p1* 
+ (( C„ Cn-C„*-2Cn CJ3)-(CM+ CJ5) p^) ß,* 
~ « C„ - C„ CK ) + (C„ + CJ pc* - pVjP,' 
-(2C,3CW+2C55CW-C16 C,,-^^^ 

(C,3 + C„) pc?) p,p3 

-vc»S<;S»c»-2C»c«-2C»c>rcuciS 
-QPOP.P« 
- ( 2C„ CM + 2 C„ C45 - 2 CIS C„ - 2 C„ C55- 2 

(C« + C45)pcJ)P3p<}ÖJ/A. 

*=M5a-<(Css-Cw-<CJJ+CJp«?+pV)pI*f 
<C,,C55-(C)1 + C55)pc*+p*c<)p<* 

+ ( 2C„ CM - 2 CI6 pc2) p, pj Q/A.       ...(14) 

A=-*,A' 
ß.-pc.e'T-,*, 
ß« = T0c«T ...(15) 

A[,A^,A$ and A' are the coefficient of corresponding 
equation of sixth degree polynomial for elastic waves 
[2]. Equation (13) admits eight solutions for a ( having 
the properties) 

a, = - a,, a4 = - a,, as = - a5, cc8 = - a, ...(16) 
For eacha?,g=l,2,3....8,wecanusethe relations(12) 
and express V = U2q/U W,=iyu„ and S,=iyu„ 
as r = L, (cg/L(a), W, = L2 (aVL(ol 

Sf = L, (a^a,) ...(17) 
where 
L, (a)=A/„ A/^ + A^)3A/24 +A/ß A/„ A/33 

L7 (a,) = Jl^B A/„ + A/„ A/2JA/24 + Mn A/,„ M„ 
~ Mn M» M„ - M„M„ M 2< - Mu MB MM 

-2A/12A/13A/23-A/„A/22A/33 
L (a,) = A/|4JWa + A/,2 A/24 A/M + A/„ A/H A/ „ . 

-A/I2A/23A/34-A/]JA/23A/24-A/I4A/22A/23...(18) 
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Combining the equations (17), with the stress strain and 
temperature relations and using suerposition, we finally 
write the formal solutions for the displacements, 
temperature, stressess and temperature gradient as 

(*„«2,*3,T)= S^WV^^"*0 ...(19) 

(■a^a,y°2s' T')= 
8 

q=\ —K*") 

Incorporating equations (16) and (17) - (21) and 
inspecting the resulting relations such as 

>|-VJ.     D.i*. = D,j.    SH=Sj = 1,3,5,7 ...(21) 
where now 

a=[/5(cI3 + 2c34v+c33a,wp-p3s7 

D4,=[^a?,S?] ...(22) 
Calculating the stresses cn, CTJ3, CT^ and temperature 
gradient r of (20) at the upper and lower faces 
x=dl2zadx==-d!2 respectively andsettingthem equal 
to zero to invoke the stress - free boundary conditions 
finallyyieldtheeight equations relating the propagation 
amplitude U„ Un... U„ .whose determinant ofcofficients 
after algebraic manipulations and reductions leads to 
the two uncoupled characteristic equations. 
D„ G, cot ( ya,) - D,3 G, cot ( ya,) + D1S G, cot ( ya5) 

-D17G7cot(ya,) = 0 ...(23a) 
D„ G tan ( ya,) - D,3 G3 tan ( ya,) + D„ G5 tan ( ya,) 

-D„G,tan(ya7) = 0 ...(236) 
Corresponding to symmetric and antisymmetric modes 
respectively with 

G,= 
^23 D25 ^27 
D33 *>35 By, G3 = 
D43 D45 D41 

»L\ ^25 Dn 
A31 D3S D37 
D4l D4S D47 

G5 = 
*>21 *>23 D27 

*>31 I>33 £>37 
D4l   O43    Ö47 

G7 = 
Ö21 D23 Ö25 
031 *>33 Ö35 
D4l D43 D45 

'       2     2c ...(24) 

4. Ortbotropic Material 

If x[ and*2 ofequation(3)arechosentocoincide 
with the in-plane principal axes for orthtropic symmetry 
then 

Q6 = C26 = C36 = C45 = 0, aj2 = 0 ...(25) 
Further more, for transverse isotropy 

Q3 = C22,     q3=Ci2    ,Q5=CÖ6 

C22 - C33 = 2C44    a22 - a.33 ...(26) 
and for cubic symmetry 

Qi = Q2=c33,  q2=ci3=c23 
C44 = C55 = C§6   0^=022=033  ....(27) 

4.1 PROPAGATION ALONG AXES OF ROTTIONAL 
SYMMETRY 

Notice that the axis x\mdx2 coincide with the 

azimuthalangles<|>=0and<|>=90»respectively. Substitute 
from equation (25), which particularize the constitutive 
relations (3) to orthotropic media, it is observed that M 
Mj,, M„ and M42 of (12) vanishes, This result mean s 
that SH wave motion decouple from the rest of motion. 
As a consequence equation (13) for <f> = 0, reduces to 

a< + B1a
4+B2a

2 + B3 = 0 ...(28) 
2,1(1    c« + C« a2 ~ P*2 - 0 ... (29) 
where 

B2=[-Ar3F3 + (FI-F2p^)ß1 

-(C33P1
l + (C„-p^)P/)e2]/A1 

A, =-*3c33c55 
F.-C.^-C,,' 

...(30) 

■2Ct3C55 F,=c33+c35 
F>=C»C»-<-C„ + CK)p<? + p>c*. ...(31) 

Equation (28) admits six solutionsforawith properties 
tt   = — ft n    := _ r» *v   =       ~ /"»*>w «2=- ... (32) 
and equation ( 29) leads to 

«, = -«»=[( PC2- CJ/CJ* ...(33) 
Here, notice that a,, at of equation (33) corresponds to 
the ( SH) motion, while those of equation (32) 
corresponding to the sagittal plane. 

By employing the same procedure and following 
the same steps as used in obtaining the results of 
equations (23) the reduced uncoupled characteristic 
equations are 

ÖIlQcot(ya1)-r>l3G5cot(ya3) + i3JjGjcot(To5)=0 

£llG|tan(ya1)-£»[3Gjtan(ya3) + I>l5G$tan(ya5)=0 
... (34a,*) 

sin(2ya7) = 0 ...(35) 
with y as defined in ( 24). 

and 

Gi mtoa 
pto 

Dl5 
.ej- D41   D45 G5 = 

Dll   D23 
D41  zy43 

...(36) 
Diq = [X,(CU - C33 o, w£)-ß3^] 

3*»-K(Qs («, + *&>! 
&kq " '?«« 9=1.2. 6 ..(37) 

*      M^Mx-MuMy,    1       MIAM^-M^M^   -(38) 

The results ( 34a,b) with their parameter defined 
in equations ( 32) and (37). constitute the characteristic 
equations for symmetric and antisymmetric modes for 
waves propagating along an in-plane axis of symmetry 
ofan orthotropic plate. Equation (35), isthecharacteristic 
equation of a horizontally- polarized SH wave on the 
same plate, which is clearly independent of thermal 
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variations, Further more, the relation (34) implicitly 
contains corresponding results for materials possessing 
higher than orthotropic symmetry. These include 
transversely isotropic, cubic, and isotropic. Here, one 
needs only to exploit the appropriate restrictions on the 
thermoelastic properties as descrived in equations (26) 
and (27). 

5. Numerical Results and Discussion 

In this section, the analytical results derived in 
the previous sections are used to present phase velocity 
(A, Al nondimentional) dispersion curves plotted as a 
function of the y=-^//2;at T0 = 0.2,0.5,0.001. These 
curves have been calculated from expression based on 
the dispersion relation in equation (34) suitably modified 
according to detail of symmetry class. Computation for 
the symmetric and antisymmetric modes have been 
carried out for carbon steel for which the physical data 
is 

X- 9.3xl010Nnr2u = 8.4xl0'0Nm2 

p = 7.9*io3_Kgm-5 

T0=293.1«>K,   E = 0.34, 

C^e^xlOMKg-' deg-' 
It is found that the phase velocity of the 

thermoelastic waves get modified and is influenced by 
the thermal relaxation time and agree in general with 
the results obtainedby [16] when thermoelastic coupling 
constant e = 0 for isotropic material, as is in following 
figures 

F|9-1 10^=0.2 

a 
£ 

0 2  4 «  8 1012 14 1« 1120 

Y 
Fnqumcy 

Fig.2 TO =0.5 

*   II c o 
"3 

'■Al 

a ( <i)A      I   08 kj 

0 2   4  *  8 10 12 Ml* 190 

rr«qu*ncy 

tra<-e 1 
trace 2 

Fig.3 
TO =0.001 

02 4« 8 1012 141« «20 

T 
Fnqumcy 

trace 1 
trace 2 
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Thermal-Mechanical Coupling and Path-Dependence in Underground Cavities 

H. Wong 

Laboratoire Geomateriaux-Departement Genie Civil etBätiment, Ecole Nationale des Travaux Publics 
de VEtat, rue Maurice Audin, 69518 Vaulx-en-Velin Cedex, France (CNRS URA 1652). 

The problem of a tunnel subjected simultaneously to pressure loading and thermal gradient is 
discussed, with an emphasis on the concept of loading path and its influence on the current equilibrium 
state. For the case of internal heating and monotone pressure drop, path independence seems to apply 
both to perfect plasticity and softening behavior, while the contrary holds in the case of cooling. 

Key Words: Loading Path, Thermal-Softening, Thermal Stress, Tunnels, Corner Flow 

1.  Introduction 

A few closed form solutions of a tunnel subjected 
to internal pressure and to an axisymmetric time- 
dependent temperature field are presented. Starting 
from the reference case: positive temperature increase 
(heating) and constant material parameters, notably the 
strength (i.e. perfect plasticity), generalizations to the 
cases of temperature decrease (cooling), and thermal 
softening (strength decreases with heating) are briefly 
discussed and illustrated. Models on internal heating 
can for example be applied to studies of nuclear waste 
disposals or geothennal extraction wells, while the 
model on internal cooling is useful in the estimation 
of tunnel lining stresses induced by ventilation. Such 
closed form solutions constitute very useful design 
tools to appreciate the importance of thermal effects in 
underground cavities. 

2. Problem Definition and Basic 
Assumptions 

We consider an infinite, isotropic, homogeneous 
medium, with an elastoplastic behavior, obeying 
Tresca's criterion: 

F(ff) = Oi - Ck - 2C = 0 (1) 

where CiXTjXJk are the ordered principal stresses, and 
C the cohesion. The strain rate tensor, under the 
assumption of small strains, can be decomposed into 
the following components: 

where E and v are Young's modulus and Poisson's 
ratio, and T(r,t) is the time-dependent excess 
temperature field with respect to a reference initial 
temperature T0. The plastic strain rate tensor s? is 
supposed to be derived from an associative flow rule 
(Äand Äij positive): 

eP= XdcF(g) if0j>Oj>Ck 
(3) 

|P = Xij 3£Fij(a)+ ^ik 3o;Fik(g) if <Jj>aj=ak 

The second form of k? applies when the stress 
tensor is at a corner of the Tresca's prism, and corner 
flow regime intervenes [l]-[2]. A circular tunnel of 
radius a is excavated, the effect of the retreating 
excavation front being simulated by a fictitious 
internal pressure, which decreases monotonically from 
the initial geostatic pressure P« to an intermediate 
value Pj€ [P«o,0]. This constitutes the first stage: the 
mechanical loading stage. 

Maintaining Pj at its previous value, an internal 
thermal loading gives rise to an axisymmetric time- 
dependent temperature field T(r,t). This constitutes the 
second stage: the thermal loading stage. Under the 
hypothesis of perfect plasticity (C constant), the 
following cases are considered: 

Case 1 : an internal heating, leading to T>0, d{T>0, 
drT<0 for all (r,t). 

Case 2 : an internal cooling, leading to T<0,3tT<0, 
3rT>0forall(r,t). 

3. Model 1 : Perfect Plasticity (C 
Constant), Internal Heating 

This problem has been treated by Wong [l]-[2]. We 
shall only retrieve the main events and the most 
salient features. For the particular case of mechanical 
loading with T=0, followed by thermal loading with 
AP=0 (see def. below), the elastoplastic zones appear 
in the sequence (PI, P2, P3, then P4), illustrated by 
figure 1. In order to discuss the concept of path- 
dependence (i.e. dependence on loading history), we 

Poo-Pi 
construct a loading plan, with AP= —T;—, a 

dimensionless mechanical loading parameter, as 

abscissa, and 9(a,t)= 2C(,l-v') a dimensionless 

temperature, as ordinate (both monotone increasing), 
as shown in figure 2. The particular loading history 
t=0 then AP=0, corresponds to path L, and the 
subregions PI to P4 traversed correspond to the 
respective configurations encountered in the same 
order. The path L' is a more general case where 
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mechanical and thermal loads vary simultaneously 
(admitted by the model). The configurations 
encountered will then appear in the order (PI, P2, P3, 
P4, P3), of which figure 3 is a more precise 
representation. 

f    PI   Vlastic    f P3/P4J 
PC\EL 

PC  PF2   EL 

a y>r*   x>r* 

PF1 (face flow): 
cr>cz>oe 

PF2 (corner flow): 
or>a9>Cz 

(^TVH EL 

/a    y 

PC (corner flow) 
<yr>az=ce 

Fig. 1 Sequence of elastoplastic zones. 

Fig. 2 Loading plane and loading path. 

4. Model 2 : Perfect Plasticity (C 
Constant),  Internal  Cooling 

This leads us to consider the lower half plane 9<0. 
Analytical results from Wong [1] show that the 
subregion corresponding to elastic behavior is an 

extension of the triangle ODE of figure 2 (9(a)>0, 
AP>0, AP+9(a)<l) to a polygon OABCD as shown in 
figure 4. 

Fig. 3 Evolution following path L'. 

6(a) A 

-2L- ^B 

Fig. 4 Elastic subregion and loading paths L, L'. 

Theoretically the yield criterion can be reached at 
each of the boundary segments of this polygon. 
Practically, for geotechnical problems, temperature 
rises are usually much less than the characteristic 
temperature T*=2C(l-v)/Ea of ordinary geomaterials, 
in other words 9(a)« 1. Thus we need only consider the 
segment CD, defined by AP+9(a)=l as for ED, but 
with 9(a) negative. It can clearly be seen that cooling 
increases the threshold of mechanical loading causing 
plastification. This phenomenon, first observed by 
Guenot & Maury [9], is now widely exploited in the 
petroleum industry in the stabilization of wellbores by 
cooling the drilling mud. 

To appreciate semi-quantitatively the effect of 
cooling, take for example two different loading paths 
L (isothermal) and L' (non-isothermal) such that the 
part of L' outside the elastic subregion is entirely 
horizontal. For path L, the relative convergence Uj 
(change of radius divided by the initial radius) at the 
state 8 is given by: 

I«. : 2(l-v2)e(AP'1) - (l+v)(l-2v)AP 
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whereas for L', the convergence at n equals: 

|Uj = 2(l-v2)(l-9(x,t))(f)2 - (l+v)(l-2v)AP 

x being the unique root of the equation : 

l-AP-9(x) + Ln(-)2 = 0 (4) 
3, 

For illustrative purposes, take a temperature profile 
9(r)=9a[l-ß*Ln(r/a)], with ß=l/Ln(b/a), which 
corresponds quite well to real temperature profiles. 
Substitution into equation (4) gives : 

rAP+9a-l-i 
>L2 + ß0a

J 

and the convergence 

I =exPL2 + Pea 

|U, = 2(l-v2) exp(T^^) - 

(l+v)(l-2v)AP 

For b/a=10, the variation of EUj vs. 9a is shown 
in the following figure, which clearly illustrates the 
influence of cooling on the convergence. Note that the 
value of Ui is relatively insensitive to the ratio b/a 
(9(b)=0)forb/a>10. 

EU./C 
12J L_l L 

Fig. 5 Influence of cooling on convergence. 

Contrary to the case of heating (9>0), the state of 
equilibrium now depends on the loading path even 
when AP and 9 are both monotone. For example, had 
we followed the loading path 08TC, we would have the 
same convergence at states 8 and n, since the portion 
87t corresponds to elastic unloading, with no variation 
of the convergence. A particular example of such 
situations can be found in deep tunnels with high in- 
situ temperatures (due to geothermal gradient). The 
problem to be solved is the estimation of stress 
reduction (so the risk of encountering traction) in the 
tunnel lining, when fresh air is sent for ventilation 
purposes at the opening of service. This scenario 
corresponds well to the loading path OSTC, and the 

medium would have an incrementally elastic behavior 
for the portion 5n. It is an established result that the 
tunnel radius is insensitive to temperature variations 
in elastic behavior. Thus cooling of the medium alone 
would not change anything; the effect is simply not 
"felt" by the lining. In the contrary, cooling of the 
lining leads to contraction, thus additional 
convergence, thereby altering the equilibrium lining- 
massif. Suppose the initial equilibrium reached under 
isothermal conditions (Pi0, Ui0) is given by the 
solution of the simultaneous equations (K=lining 
stiffness): 

Pi = tM(Ui);  Pi = K(Ui-Ud) 

Subsequent variation of convergence due to cooling 
can be written as : 

5Pi 
8Uj =a|T| K 

The first term is simply the thermal contraction 
(which induces positive convergence), whereas the 
second term, of opposite sign, represents the reduction 
of the pressure from the massif, and counterbalances 
partially the thermal contraction. Denoting Pi'=Pj+5Pi 
and Ui'=Ui+8Ui, it can easily be shown that the new 
equilibrium state is the solution of the modified 
system here-below: 

Pi = fM(Ui);  Pi = K[(TJi-Ud) - a ITI ] 

which admits a simple graphical interpretation as 
shown in figure 6. 

Convergence curve: Pj=fM(Uj) 

isothermal 
equilibrium 

new equilibrium 
jfter cooling 
         ►Ui 

'"   I rp I    shift of confinement curve 
l____^jto take account of cooling 

Fig. 6 Change of equilibrium due to cooling. 

This model has been used to estimate the possible 
thermal stresses in the lining of an Alpine tunnel. 

5. Model 3 : Thermal Softening 
(3TC(T)<0), Internal Heating 

The decrease of mechanical strength with 
temperature increase has been reported by many 
authors, of which we can mention the experimental 
work of Chaye & Sirieys [3], Hommand & Houpert 
[4], Hueckel [5], Rousset [6] and Wong [7]. One 
particular example, reconstructed from Rousset[6], 
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illustrates the typical drop of strength to be expected 
in deep clays (Fig. 7). 

■■t i i i i i i i i i 
100 150 

Temperature (*C) 
Fig. 7 Thermal softening in deep clays. 

This suggests a generalization of the reference 
model to a thermal-softening behavior 

3TC(T)<0   for T>0, 3tT>0, 3rT<0 (5) 

For example, data in figure 7 can be approximated by 
the following function: 

C(T)/C(To) = 1 - A[l - e-°-027<T-To)] 

with A lying between 0.25 to 0.55. This model can be 
useful in, for example, the design of underground 
nuclear waste disposals or geothermal extraction wells, 
where one would be interested by the effects of 
strength reduction on the borehole stability and 
convergence. 

Note that plastic strains only occur if the stress 
tensor stays on the yield surface, while softening 
stipulates that the latter shrinks with temperature, i.e. 
DtF(&T)=^:3aF<£,THt^F(o,T)=0. As T>0 and 
drF(a,T)>0, we deduce that o!3oF(g,T)<0, hence d: 
ep <0, violating the "stability" requirement set forth 
by Drucker (see for example Palmer et al [8]). In 
consequence, uniqueness of the solution is not 
theoretically guaranteed. Notwithstanding, only one 
consistent solution has been found which verifies all 
the necessary conditions of consistency. Detailed 
theoretical developments will be published in a 
separate paper. It is interesting that this solution leads 
to the same sequence of elastoplastic zones (figure 1) 
and admits the same qualitative descriptions such as 
the sub-division of the loading plane. However, this 
time, the boundaries are not fixed beforehand. The new 
element in this solution is a dimensionless field 
function C(T), defined by C(T)=C(T)/C(T0), 
representing the degree of softening inside the 
medium. For example, the yield condition of PI: 
AP+9(a)=l becomes: AP-t^a^OTa) where Ta=T(a,t) 
is the temperature at tunnel wall. The plastic boundary 

x(t) in the configuration P2 is now given by (cf. 
equation (4)): 

e(x(t),t)-C[T(x(t),t)] = -AP + 2fX    ^jpdS 

Putting C(T)=C(T0) gives the solution of model 1, 
demonstrating the consistency of the two models. 

Conclusions 

The three thermal-mechanical models presented 
here, thanks to their analytical character, allow a more 
comprehensive study of thermal effects in underground 
cavities. Their simplicity also facilitates greatly 
numerical computations, and sensitivity studies 
become routine matters. These facilities make them an 
ideal complement to more elaborate numerical tools in 
a design office, especially at the preliminary design 
stage. 
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THERMAL STRESS RELAXATION 
DURING GROWTH OF CYLINDRICAL SHELLS 

John C. Lambropoulos 

Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627 

We examine thermal stress relaxation during growth from the melt of shaped crystals in the form of thin 
circular cylindrical shells, using the Haasen-Alexander constitutive law, in which the creep strain-rates and 
dislocation generation-rate depend on the current levels of temperature, stress, and dislocation density. Unlike 
problems in time-independent domains, growth problems have vanishing tractions and non vanishing traction-rates 
which are proportional to the growth rate. Once the stress- and dislocation-rates are computed, they are integrated 
starting from the solid-liquid interface. Such integration requires knowledge of stresses and dislocation density at the 
solid-liquid interface, significant microstructural parameters describing the solidification process and critically 
affecting the resulting stress relaxation and dislocation density, including the final density. 

Key words: cylindrical shell, thermal stress, relaxation, dislocation density, crystal growth, silicon, semiconductors. 

1.  Introduction 2.   Constitutive   law 

As the efficiency of Si-based photovoltaic cells 
increases, photovoltaic energy becomes more 
attractive as an alternative form of clean, inexpensive 
energy.(I> Experimental efficiencies in the range 13%- 
23% have been reported. The recent series of articles 
edited by Sinke(2) outlines some of the materials 
issues for with photovoltaic energy. To further 
enhance efficiency, dislocation density must be 
minimized. 

A common method for the growth of thin Si 
plates from the melt for photovoltaic applications is 
Edge-defined Film-fed Growth (EFG): Si plates are 
grown either directly in the form of rectangular 
panels, or as polygonal cylindrical tubes which are 
subsequently sectioned by laser cutting into 
rectangular panels, thus increasing productivity.0) 

Growth of flat sheet<4) or polygonal tubes(5) 

gives rise to inhomogeneous thermal and residual 
stress distributions caused by inhomogeneous 
temperature gradients. For comparison, see 
Lambropoulos.t6) Since the temperature is also very 
high during growth from the melt, large amounts of 
creep by dislocation generation and multiplication 
also lead to stress relaxation at the cost of significant 
dislocation density and residual stresses. 

We consider the simplified geometry of thin 
cylindrical shells of circular cross section, as the 
limiting case of a polygonal tube in which the 
number of facets increases to infinity. The interaction 
of various factors leading to dislocation generation is 
investigated. Such factors include the rate of 
temperature decay away from the solid-liquid interface, 
the rate of crystal growth, the radius and thickness of 
the growing shell, as well as the boundary conditions, 
in terms of the initial dislocation density and initial 
stress prevailing along the solid-liquid interface. 

High-temperature inelastic deformation of Si is 
described by decomposing strain-rate into elastic 
(assumed isotropic), thermal, and creep parts: 

£ij=e?j+£.?+£,? 

£f;= =i±vfo„—y_ 
u     E  fa   l+v 

^=aCI)T8ij 

ÖkkSy) 
(1) 

with a super-posed dot denoting material derivatives. 
Several different models have been used to 

describe the creep strain-rate, including power-law 
creep, and exponential dependence of strain-rate on 
stress via an activation volume.<6, n) Such models 
view dislocation generation as a steady-state process, 
so that the total dislocation density is constant. As a 
result, these models can not predict an evolving 
dislocation density. 

For dislocation generation in semiconductors 
such as Si, Alexander and Haasen m proposed a 
constitutive law in which the inelastic strain-rate and 
dislocation generation rate both depend on 
temperature, stress, and on the dislocation density. 
This constitutive model predicts, for example, the 
presence of upper and lower yield points in a uniaxial 
tensile test at fixed loading rate and temperature. 
Extensive data and review of the model assumptions 
are in George and Rabier.(8) The Alexander-Haasen 
constitutive law was introduced in the study of EFG 
flat plate Si crystal growth by Dillon et al.,t9) and 
has also been used to describe dislocation generation 
during Czochralski crystal growth. °0, n> 

As the state of stress during crystal growth is 
multiaxial and inhomogeneous, we use the multiaxial 
form of the Alexander-Haasen constitutive law 
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£f=(t>bB0exF(-Q^gT)<Te-AVN)mN| (2) 

N=KB0exj(-Q/RgT)(Te-AVN)m+1 N 

£jp is creep strain-rate, N is dislocation density, sjj = 
<*ij-<*kk8ij/3 is stress deviator, 5ij is Kronecker 
delta, and Te is effective shear stress Te = (sij sjj/2)1/2. 
<x> = x if x>0, and 0 otherwise. For Si: <(> = 1/2, b 
is Burgers vector (0.38 nm), exponent m = 1.1, and 
constants B0 = 8.6X10"4 m^N^-V1, K = 3.1X10"4 

mN"1, A = 4 Nm"1 (describing back stress of 
dislocations already present). Activation energy of 
dislocation motion is Q = 211 kJ mol"1, and Rg = 
8.314 J mol"1 K"1 is the gas constant 

3.  Problem  formulation 

A circular cylindrical shell is semi-infinite in the 
growth x-direction. The growth rate is po- The shell 
has radius R, thickness t, and bending rigidity 
D=Et3/[12(l-v2)]. 

The solid-liquid interface is at x = 0, with z 
measuring from the shell middle surface. As the shell 
is subjected to axisymmetric loading, the kinematic 
relations of strain-rates and velocities w > ü in the 
radial (z) and axial (x) directions, are, respectively, 

* -du_,d_w     ^ _w 
dx      dx2 R 

and the incremental equations of equilibrium are 

(3) 

N, =0, —s+-i=o, —3.-0^=0 
dx dx (4) 

When steady-state growth conditions are attained 
(long shell), field quantities do not change in a fixed 
laboratory frame of reference, and material derivatives 
are then converted to spatial derivatives by 

A d<P 

(5) 

The differential equation for the radial velocity is 

dx4 dx2 

where ß = 13Q-V1)]1'*/-fat and 

(6) 

Fj(x) 

F2(x) 

DR   DR(l-v2) 

D(l-v)   D(l   v2) (7) 

Thermomechanical force-resultant rates are 

N^rWdz, M*-E«J; 
■1/2 

+X/2 
, EaTzdz 

t/2 (8) 

*? 
*? 
»? 

Traction-free boundary conditions M* = Q* = 0 at 
the solid-liquid interface x = 0 lead to boundary 
conditions in terms of the force- and moment-rates 

Mx=PoQx=0'   Qx=P0 
dQ 

dx 
x=__ ^e      (9) ■Po 

Thus, the traction-rate boundary conditions require 
knowledge of the transverse force No (equivalently, 
the stress Ofe) at the interface. 

The radial velocity rate was found by a Green's 
function iterative approach and numerical integration 
in the axial direction. The integration grid pattern was 
finely spaced near the solid-liquid interface (where 
stresses are expected to vary rapidly). High order 
Gauss quadrature rule was used to find the stress 
profile in the thickness direction so as to obtain the 

sectional loading rates N£P, N^, M^f • For stability 
and convergence, a one-dimensional line search was 
used to obtain the optimum step length for the radial 
velocity and curvature-rate in each new iteration. 

Once the stresses are computed, the dislocation 
density and creep strain-rates are found by integrating 
equations (2) in the direction of crystal growth, where 
N(x=0, z) s No (z) is the initial dislocation density 
along the solid-liquid interface. The initial dislocation 
density No can not be determined a priori, as it is set 
by the physical mechanism of solidification. 

The temperature distribution is taken to be 

T(x,z)=Tr+(Tm-Tr + Tz^)e-'yx 
(10) 
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where Tr is the room temperature, Tm is the melting 
temperature, and Tz is the temperature difference 
between the outer surface and the inner surface of the 
shell. We assumed that No is uniform through the 
shell thickness.For the shell geometry we use typical 
radius R = 5 cm, and thickness t = 100 fun. 

4.  Thermoelastic   results 

We first use the thermoelastic approximation, 
neglecting the creep strain-rates as compared to the 
thermal and elastic strain-rates, with the dislocation 
density level determined from the thermoelastic stress 
values. 

Fig. 1 shows the effect of the initial dislocation 
density at the solid-liquid interface on the final 
dislocation density at the outer shell surface as a 
function of the ratio y/ß describing the rate of 
temperature decay with respect to the geometrical 
dimensions of the shell. 

10+2 T/P 

0.01 0.1 

Fig. 1   The final dislocation density at the outer 
shell surface z=t/2 vs. the dimensionless ratio y/ß for 
various values of the initial dislocation density N0 at 
the solid-liquid interface. 

For slow temperature decay (y/ß « 1), each 
material element of the shell spends a longer time 
interval at higher temperatures, and the high rate of 
dislocation generation makes the final dislocation 
density insensitive to the initial value ("temperature- 
driven" dislocation multiplication). 

On the other hand, for rapid temperature decay, y 
is of order ß or larger, and severe thermal stresses also 

make the final dislocation density insensitive to the 
initial value at the solid-liquid interface ("stress- 
driven" dislocation multiplication). 

For intermediate values of y/ß, the effect of the 
initial dislocation density is significant, with lower 
initial values leading to lower final values. 

When the initial dislocation density is small, the 
maximum creep strain-rate is negligible when we are 
not in the "temperature-driven" or "stress-driven" 
regimes of dislocation multiplication. At intermediate 
values of y/ß the creep strain rates are negligible and 
thermoelastic calculation of stresses is justified. 

5.  Stress  relaxation 

The problem formulation outlined above 
introduces two important material parameters at the 
solid-liquid interface, the initial stress Oe, o which 
induces a generally non-vanishing tangential force No 
at the interface, see equation (6), and the initial 
dislocation density No at the interface. In this aspect, 
growth problems of the type described above are 
different in their formulation from problems in which 
the material has a constant mass. 

The effect of stress relaxation at the interface will 
be examined by using 

<7e,0=f [(ce)elasticIx=0 (11) 

where (<Je)eIastic *s me thermoelastic stress based on 
the temperature distribution used. Multiplicative 
factor f describes the effect of stress relaxation (for f= 
1, there is no stress relaxation). It is expected that f 
and No are inversely related: When No is large, there 
is significant stress relaxation (f —» 0). 

In Figures 2-3 we show the computed effects of 
the initial dislocation density No, and relaxation factor 
f on the maximum final dislocation density. Slow 
growth leads to high final dislocation density, because 
each shell element spends a longer time interval at 
higher temperatures. Larger dislocation density, in 
turn, produces large creep strain-rates and strains and, 
hence, larger residual stresses. Uniform temperature 
through the shell thickness produces the lowest final 
dislocation density and residual effective stress. 
Higher initial density at the interface x=0 generally 
leads to higher final dislocation density, since 
dislocation multiplication rate depends on the current 
dislocation density. 

For complete stress relaxation at the interface (f= 
0), the final dislocation density is low because of the 
stress dependence of the dislocation multiplication 
rate. For little relaxation (f-»l), the large stresses 
prevailing at the interface induce high dislocation 
multiplication rate, and hence high final density. 
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Initial disloc. density N , m" 2 

Fig. 2:  Dependence of the final dislocation density 
on the initial dislocation density at the solid-liquid 
interface. Solid symbols are for slow temperature 
decay, and open symbols for intermediate decay. 

Po = 2 mm s  \ No = 10 m~ 2 

0.2 0.4 0.6 0.8 

relaxation factor f 

Fig. 3:  Dependence of final dislocation density on 
the initial stress at x=0. For f = 0, full stress 
relaxation at the interface; For f = 1, no relaxation. 

6.   Conclusions 

We have outlined an approach for computing 
thermal stress, stress relaxation, and dislocation 
density during growth oftbin shells from the melt. 

Problems of combined growth and stress 
relaxation require knowledge of the stress tensor along 
the growth interface, in contrast to problems requiring 
specification of the traction vector when mass is 

conserved. When the Alexander-Haasen model is used 
to describe the multiplication of dislocations during 
crystal growth, the initial dislocation density at the 
solid-liquid interface additionally must be specified. 

Initial stress and dislocation density along the 
interface are used as initial conditions for finding the 
stresses and dislocation density everywhere in the 
crystal, by integrating the stress-rates and dislocation 
multiplication rate in the growth direction. These 
rates vary rapidly within a short distance from the 
interface, and soon reach a constant value. The 
mechanical and microstructural state of the solid- 
liquid interface is thus identified as a significant 
aspect of the crystal growth problem. 
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Modeling of Damage Effect on Heat Transfer in Solids 
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The paper deals with a modeling of coupling between the damage evolution and heat trans- 
fer in solids, that undergo brittle deterioration from creep. Three models that account for: 
direct conductivity drop with damage, simultaneous conductivity drop and radiation increase, 
and substitutive conductivity and radiation through partly damaged solid, are formulated. As 
examples, cylinders subject to creep damage under pure thermal gradient are considered, and 
corresponding failure mechanisms are compared. 

Key Words:  Rheology, Continuum Damage Mechanics,  Thermal Fracture Conductivity, Ra- 
diation 

1. Introduction 

Creep process and associated material deteri- 
oration are temperature sensitive. The classical 
approach consists in accounting for the effect of 
temperature on the material constants in consti- 
tutive equations of creep and creep damage. This 
approach was applied by the authors in [1] where 
an annular disk, subject to creep under combined 
peripheral radial tension and stationary radial tem- 
perature gradient, was considered. 

When more advanced approach is used, the 
thermo-damage coupling is required in order to 
take into account changes of the temperature field, 
caused by deterioration, and vice versa. 

2. Basic equations 

2.1 HEAT EXCHANGE IN SOLIDS SUBJECT 
TO DAMAGE EVOLUTION 

Tanigawa [2] formulated basic thermo-elastic 
equations and problems for time-independent non- 
homogeneous structural materials X(r) in the form: 

l_d_ 
r dr 

rA^d7 = 0. (1) 

The problem becomes more complicated when 
the time-dependent creep process in the presence 
of temperature field, and the associated material 
deterioration, is considered. The material non- 
homogeneity becomes time-dependent X(r,t), fol- 
lowing damage accumulation in a solid. Hence, 
when isotropic nature of damage is assumed (gov- 
erned by a single scalar parameter D (cf. Kachanov 

t Assistant Professor at Cracow University of Technology 
^Professor at Cracow University of Technology 

[3]), a more general form instead of Eqn.(l) is re- 
quired: 

IJL 
r dr 

rA(r,t)g = c„£-^-. (2) 

In order to specify a thermal conductivity function 
X(r, t) the damage evolution with time D(t), that 
results in temperature redistribution, is used. 

The simplest model is based on the assumption 
of the linear heat conductivity drop with damage 
(cf. Ganczarski and Skrzypek [4]): 

XD(r,t) = X(r)[l-D(r,t)}, (3) 

where X(r) denotes non-homogeneous, in general, 
distribution of thermal conductivity in a virgin (un- 
damaged) solid, whereas scalar parameter D de- 
fines current damage level, D £< 0,1 >. 

Further extension of the previous model allows 
for an additional heat flow term through the dam- 
aged surface element portion, by application of 
the Stefan-Boltzmann radiation law. Hence, when 
both conductivity and radiation mechanisms of 
heat transfer are admitted, the following extension 
of Eqn.(2) is proposed: 

ld_ 
r dr or 

= cvo 
dT 
dt' (4) 

with XD(r,t) given by (3). This model was sug- 
gested by the authors in [4], and applied to the ra- 
dial flow in an originally homogeneous cylinder sub- 
ject to constant temperatures at the edges, when 
the scalar damage growth rule was applied. A com- 
bined conductivity /radiation mechanism allows for 
a heat flux even though the damage at a point 
reaches level 1 (due to radiation across the mi- 
crocracks). However, it will be shown further, the 
model exhibits the essential inconsistency. Namely, 
the form of term associated with radiation suggests, 
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damaged solid pseudoundamaged solid 

Fig.l. Schematic of heat transfer through partly damaged material element and hypothesis of heat equivalence 

that there exists heat exchange caused by a redis- 
tribution of damage only, even though the temper- 
ature gradient is locally zeroth. Hence, to omit 
this inconsistency, it is necessary to use of second 
law of thermodynamics, and to cut off inadmissible 
temperature distribution. 

Another way consists in accounting for a com- 
bined heat exchange, when the conductivity is as- 
sumed as dominant phenomenon characterized by 
the substitutive coefficient of thermal conductivity 
(cf. Staniszewski [5]), modified in order to take 
into account simultaneous influence of conductiv- 
ity through point r and radiation from r to r + Ar, 
Fig.l. Equivalent coefficient of thermal conductiv- 
ity is expressed, therefore, by the equation: 

Ae?(r, t, T) = XD (r, t) + AXrad(r,t,T).     (5) 

The equivalent (substitutive) coefficient of ther- 
mal conductivity is obtained by equating heat flux 
due to radiation through a partly damaged cross 
section and heat flux due to conductivity through 
fictitious pseudoundamaged cross section: 

AXrad(r,t,T) = ac b «>+» T3Ar.    (6) 

In a simplified case, when changes of D with 
r are small, the last term in the parenthesis may 
be disregarded. Consequently, the equation of heat 
transfer (2) may be rewritten in the following form: 

15_ 
r dr or 

■CVQ 
dt' (7) 

with Xeg(r,t,T) given by Eq.(5) and (6). 
Concluding: in the model (7), a combined con- 

ductivity and radiation mechanism through un- 
damaged (solid) and damaged (voided) material, 
respectively, is reduced to the equivalent conductiv- 
ity through the fictitious, pseudoundamaged ma- 
terial, when a substitutive nonlinear coefficient of 

thermal conductivity function Xe<J(r,t,T) through 
the pseudoundamaged material is introduced to the 
Fourier conductivity law for partly damaged mate- 
rial (4) instead of linearly decreasing with damage 
coefficient XD(r,t) in the model (3). Note, that in 
the model under consideration (7), in case when 
the material damage parameter reaches locally 
level D = 1 (macrocrack initiation), the equiv- 
alent coefficient Xeq(D = 1) remains non-zeroth 
and, hence, the residual fictitious heat conductivity 
through the pseudoundamaged (fictitious) surface 
element, equivalent to the heat radiation through 
the completely damaged (true) element, remains 
non-zeroth as well. On the other hand, the model 
(7). in contrast to the model (4), is free from an 
inadmissible heat exchange phenomenon caused by 
the damage redistribution, when the temperature 
gradient locally drops to zero. 

A complete 3D model, with the term dD/dr 
taken into account, is a subject of separate paper. 

2.2 GENERAL EQUATIONS OF MECHANICAL 
STATE 

When the geometrically linear theory of small 
displacements is applied and decomposition of to- 
tal strains into elastic, creep, and thermal parts is 
used:   e = e

s + £
c + eth, the problem might be 

formulated via the stress function 

for t = 0. 

^^ = rf^K + 
5  -F' -{l-v)ei+tJ—Il ■      f0Tt> 0, (8) 

where the linear differential operator T[<t>,T] takes 
the form (primes and dots denote derivatives with 
respect to r and t, respectively): 

^,7W + ^_4+   *   r\ 
l-i/ (9) 
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Fig.2. Boundary conditions imposed on a cylinder 

The stress components and their rates are defined 
as follows: 

or = <j>/r,    <Te = <j> ,        \ 
a, = v(ar + <re)-EaT, J 
cT = <j>/r,    ers = 4>\    _     1 
&. = i/(aT + <?e) — Eat+   j 

+E{iT+ i\), J 

for t = 0 

for i > 0 
(10) 

Constitutive equations for coupled creep-damage 
problem are defined by the similarity of de viators, 
based on the flow theory 

l <Teq 

k, I = r, (11) 

and the time hardening hypothesis associated with 
the Kachanov isotropic brittle rupture law (4): 

itq = «T(T)f(*), i> = C(T) \-D 

n(T) 

(12) 
where f(f) is a given time function, () denote 
Macauley brackets, and <TJ refers to the maximum 
principal stress. In case of the plane strain condi- 
tions and creep incompressibility the intensities of 
the stress, the net stress (with the effect of deteri- 
oration taken into account), and the strain rates, 
are defined by the following formulae [4]: 

<?eg = \j 2Sklsk!: 
net _     "eg 

°eq    — 1-D' 
m(T)-l       / „ 

■ c     _      Peg ( V6/r — &z 
'r/S -  (1 _ D)m(T) {*'/« 2 

(13) 

m 
In the above formulation, damage rate and strain 
rates are defined by temperature dependent mate- 
rial functions m(T), C(T), n(T). 

3. Formulation of boundary problems 

Let us consider a cylinder of the inner and outer 
radii a and 6, respectively, under the plane strain 
condition, subject to radial temperature gradient 
Fig.2.   Stresses and their rates satisfy Eqn.(8) as 

well as homogeneous boundary conditions: 

<f>(a) = 0,    <j>(b) = 0,   for t = 0, 

4>(a) = 0,   <}>(b) = 0,   for t > 0. 
(14) 

The homogeneous, stationary equations of heat 
transfer (2), (4) and (7) are compared. Tem- 
perature redistribution due to damage are consid- 
ered here as quasistatic, hence right-hand sides of 
Eqs.(2), (4), (7) are disregarded. In general, for the 
very high damage rates preceding failure, this term 
might be significant. 

Temperature at both inner and outer edges of 
the cylinder is held constant in time, hence, the 
following boundary conditions have to be satisfied: 

T(a) = Ta,       T(b) = Tb. (15) 

As the initial solution (for t = 0,D = 0), the 
classical logarithmic distribution of temperature is 
obtained from all boundary problems (2), (4) and 
(7), with (15) taken as boundary conditions for 
temperature field. 

4. Numerical algorithm for 
thermo-creep-damage problem 

The elastic solution when D = 0, and the classi- 
cal distribution of the temperature are assumed as 
the initial conditions of the creep damage problem. 
Then, for the subsequent time step "new" values of 
strain eT/e, stresses <?r/6/2, damage parameter and 
temperature are computed. In all cases under con- 
sideration, and each step of time, the equation of 
heat transfer is solved by use of subiterations either 
of the Finite Difference Method, associated with 
the relaxation method, or the Modified Midpoint 
Method. Material functions m(T), C(T), n(T) are 
updated as well. The procedure is repeated until 
the first macrocrack is initiated. 

5. Results 

All numerical examples presented in this pa- 
per deal with the cylinder made of stainless steel 
(rolled 18 Cr, 8 Ni, 0.45 Si, 0.4 Mn, 0.1 C, Ti, 
Nb stabilized, austenitic, annealed at 1070"C, air 
cooled ASTM 321) of the following properties [6], 
[7]: E = 15.0 x 103 kG/mm2, <r0.2 = 12.0 kG/mm2, 
v=0.3, a = 1.85 x 10"51/K, A=23W/mK, a/b = 
0.5, a - 5.669 xl0-8W/m2K4, €=0.50, the temper- 
ature dependent material functions for creep rup- 
ture are: 

T 
CO 

m n 
(kG/mm2) 

C 
(kG-^s-1) 

600 4.5 3.1 10.0 1.68 x 10-- 
650 4.0 2.8 6.0 1.29 x 10"-u 

700 3.5 2.5 3.8 6.36 x 10"19 
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where c\B denotes the stress necessary to cause 
creep rupture after 105 hr. 

5.1 EXAMPLES 
5.1.1 Thermo-Damage Coupling in a Cylinder Dis- 
regarded. 
Disregarding the effect of damage accumulation 
on heat transfer Eqn.(l), the sampling solution is 
obtained. In this case temperature remains un- 
changed, the accompanying hoop stress relaxation 
is slow enough to reach at finite upper-band esti- 
mation of the lifetime. 
5.1.2 Pure Heat Conductivity Case. 
In case of simplified equation of heat transfer (2), 
where radiation through the damaged part of wall 
is disregarded (e = 0), the significant temperature 
redistribution is observed. The hoop stress relax- 
ation is now comparable with the sampling case 
except for the tertiary creep period, hence lifetime 
is eventually shorter (85%i/). 
5.1.3 Combined Conductivity-Radiation Case. 
Combined conductivity / radiation mechanism 
taken into account cause that saturation of tem- 
perature precedes rupture. Hence, appropriate 
cutting-off procedure, to avoid thermodynamically 
inadmissible temperature fields, must be intro- 
duced. The high temperature gradients are ob- 
served in the inner zone, that result in a change of 
sign of the hoop stress and, eventually, the lower- 
band estimation of the lifetime (38%fj). 
5.1.4 Equivalent Conductivity Concept. 
The concept of equivalent conductivity-radiation 
exhibits the essential differences dependent on 
whether the derivative dD/dT is disregarded or 
taken into account. When the exact formula (6) 
is applied a characteristic hoop stress discontinuity 
is formed at the point of most advanced damage. In 
case of dD/dT = 0 concept (7) sightly differs from 
(2). Concluding, as the most reliable, the equiva- 
lent conductivity concept Eq.(7), is recommended. 

A comparison of the lifetimes for all considered 
cases is presented in Table 1. 

relative 
lifetime 

Examples 
5.1.1 5.1.2 5.1.3 5.1.4 

U 0.853i/ 0.3812/ 0.789 ti 

(4) Ganczarski, A., Skrzypek, J., Concept of Thermo- 
Damage Coupling in Continuum Damage Mechanics, 
Proc. Thermal Stresses'95, 46, 4, pp.83-86, 1995. 

(5) Staniszewski, B., Thermodynamics, PWN. Warsaw, 
1982 (in Polish). 

(6) Odqvist, F.K.G., Mathematical Theory of Creep and 
Creep Rupture, Oxford, Clarendon Press, 1974. 

(7) Holman, J.P., Heat Transfer, McGraw-Hill, 1990. 

Table 1 Comparison of lifetimes of cylinders 
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1991. 
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pp.287-300,1995. 
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Fig.3. Comparison: a) temperature redistribution, 
b) relaxation of hoop stress, c) evolution of hoop 

stress with time 
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to Evaluate LCF Resistance 
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A rational design procedure is suggested which includes associated rheological and durability analysis or 
structures with local inelastic zones subjected to variable repeated mechanical and thermal actions. The approach is 
based on the structural model of elasto-visco-plastic medium and the ideas which follow from. 
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^Introduction 2.The structural model of medium 

In many cases lifetime of structures subjected to 
variable repeated actions of load and temperature is 
limited by situations which exist in their inelastic 
zones (IZ): rise of inelastic strains is here the most 
likely. Meanwhile, application of the traditional 
methods of inelastic stress-strain analysis to such 
problems usually leads to excessive computational 
volumes. Hence necessity of some approximate 
approaches follows, by which sufficiently realistic 
durability prognosis can be made at essentially 
smaller labour input. As an example, the known 
Neuber"s approach could be served: however, its 
possibilities are restricted by analysis of stress 
concentration zones under monotonous loading 
condition: besides, in some cases the obtained results 
lack accuracy. Utilization of the structural model of 
elasto-visco-plastic medium [1] and of regularities 
that it implies (in particular, the generalised 
similarity principle [2]) allows to find solutions for 
the problems which appear at diverse loading 
conditions. In difference from the Neuber's and other 
authors' (Stowell, Makhutov) supposition, use of any 
universal formula is not assumed here. By the 
deduced regularities inelastic deformation process in 
unsafe point xo of a structure generated at any 
loading program can be determined proceeding from 
outcomes of stress-strain analysis (carried out by 
any way) at initial loading. 

The offered approach expands a wide circle of 
the problems and is not restricted by the cases of 
expressed stress concentration: it remains valid when 
inelastic strain domains in a design are relatively 
small (at least, situation is not close to the limit 
equilibrium state). And in any case, due to use of 
the structural model, the peculiarities of non- 
isothermal plasticity and creep under repeated 
loading are rather adequately reflected. 

Lifetime evaluation (in accordance with the 
criterion of a macro-crack formation) is based on the 
suggested version of damage accumulation model of 
kinetic type. The latter is associated with the 
mentioned structural (rheological) model as they 
both are defined by common state parameters. This 
essentially simplifies the corresponding design 
procedure. 

It should be reminded that the mentioned type 
of rheological models [1-3] is based on the concept 
of the actual materials micrc-inhomogeneiry. The 
most simple way to reflect this property goes back 
to the known Masing scheme (in the Western 
countries for such models they frequently use terms 
"composite" and "layers"). Accordingly, deformation 
behavior of a body element is here imitated by a 
package of perfectly viscous subelements (SEs) 
having equal strains s (or, in general, strain tensors 
s) and temperature T. Creep rate of any is supposed 
to be a function of temperature and individual stress 
(or corresponding elastic strain r). It has been 
assumed, that all these functions are similar to some 
common rheological function (RF) &(x, T) which is 
specific for each material. 

Typical RF at constant temperature, being 
plotted in semi-logarithmic coordinates, usually can 
be approximated by two intersecting straight lines. It 
reflects two different inelastic deformation regimes. 
The first (marked as p'p (s) in Fig.l) is distinguished 

by relatively high strain rates in a narrow elastic 
strain range. This type of inelastic deformation is 

Igp' 

Fig.l. The rheological function 

usually considered as a scleronomic one (plasticity). 
The second (p'c (s)) is typical for creep {s is the state 
parameter of the simulated medium, explanation of 
its essence and physical interpretation will be given 
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below, by points the time derivatives - d/dt - are 
denoted). 

It is evident, that in any case (excluding the 
intersecting zone) one of the two inelastic regimes - 
viscous or plastic (and the corresponding type of 
damage accumulation, see p.5) has prevailing 
meaning; however, they both are realized 
simultaneously: 

f = AT(T)exp(B^) + Ac(T)exp(BcS). (1) 

3. The similarity principle 

Cyclic steady deformation behavior of a 
structure is here considered. It is supposed that 
loading which is realized in the IZ is close to 
proportional (this often takes place even in spite of 
disproportionate changes of forces and/or thermal 
strains). In the general case, history of an arbitrary 
external action can be presented by adequate field of 
fictitious elastic strains rt(x,t) which is related 
linearly with corresponding stresses in the structure. 
In connection with any local IZ it is sufficient to 
know strains re(x,t) in the zone only [3]. 

Moreover, taking into account the assumption 
made for loading conditions in such zones, we can 
rely on the generalized similarity principle (GSP); it 
should be reminded that the GSP has been deduced 
(on the base of general equations of the structural 
model) for arbitrary design subjected for proportional 
variable repeated loading [2]. Then, due to respective 
similarity of actual stress, strain and displacement 
fields generated in a structure, the necessary initial 
information can be reduced to fictitious elastic strain 
history in its any representative point x0 (e.g. in a 
point which is supposed to be unsafe). 

Below the necessary equations are written 
assuming that the stress state is linear. Their 
generalization for the case of arbitrary stress state is 
trivial, except a peculiarity: instead of effective 
values of tensors, the corresponding scalar measures 
here should be used, which differ from the formers 
by possibility to change their signs. 

Let rjx) in any point of the IZ at any time 
instant / be proportional to a common parameter R = 
re(xa); analogously, T(x,t)*T(t)<F(x), where 
T(t)=T(xo,t). Functions R(t). T(t) determine the 
prescribed loading program. 

Current state which exists in the IZ 
(designated below as S(t)) represents a set of actual 
elastic and total strain fields r(x),e(x); accordingly, 
parameter E determines total strain in point x0 of IZ 
(here and after only power part of actual strain is 
meant i.e. thermal strain component is excluded). 
Creep rate field p' (x,t) is determined as a non- 
linear function of state S and temperature T. Let us 
remind, that any volume element of structure is 
represented by a bundle of perfectly viscous SEs. 

Let initial loading of a structure at constant 
power strain rate ET =b and temperature T=Tb. be 

taken as the basic one. The corresponding one- 
parametric set of states Sb will be termed as the 
basic one (Mb); any of its elements is identified by 
parameter R (Sb(R)eMb). Initial loadings 
corresponding to different values of £* ,T form a set 
of states M2. Accordingly to the GSP, the latter 
proves to be two-parametric: any state S 
corresponding to arbitrary values of R, E",T is 
similar to some state Sb: 

S(R E-.T)=sSb(R/s); 
s = (H\E'/bJ). 

(2) 
(3) 

Here and after upper zero denotes corresponding 
inverse function (<£° is function inverse to the RF 
with respect to the first argument). In addition, here 
such normalization of the RF is used, that <D(lJb) 
= b. In particular, if the basic loading determines the 
diagram 

Mm. (4) 

the diagrams obtained in other trials are similar to 
the mentioned one with respect to the coordinate 
origin: 

R=sf(E/s). (5) 

At repeated loading similarity of the states 5 
ceases, but the differences S-= S - Sv (S„ denote the 
state in the last reversal) prove to be similar to the 
states Si [2]: 

SJUL. E'.T)=KSb(R/K}: 

K=S-S„ 

Accordingly, 

R' =Kf(E-/K). 

(6) 

(7) 

(8) 

The asterisks mark changes of the corresponding 
parameters on a comparison with their values have 
been reached at the last reversal moment (index v). 

Expressions (2) and (4)-(8) can be used also at 
variable rate E" and temperature T as some 
approximation: however use of expression (3) can 
lead to some errors. For example, stress relaxation 
in a zone IZ at value £* which is close to zero is 
possible, but this does not mean that parameter 5 is 
equal to zero. In such situations the latter parameter 
can be represented as a functional of the deformation 
history; the defining equation is based on a 
similarity assumptions (1),(4) and can be obtained by 
time differentiation of expression (8) taking into 
account (3). 

By introducing parameter 7csE-R which is 
linearly related with state S. we come to the state 
equation 
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»•= Ois.T)(l-f'(EJ^); (9) 

parameters s and EJK can be determined using 
parametric equation (S); here and below derivatives 
are marked by dashes. The state equation (9) can be 
used on any stage of loading history (on the initial 
one it should be adopted Ev=sv=Rv=0). Specifically, 
from (9) at E"=const, T=const expression (3) 
follows. 

Unfortunately, the "memory rules" by which 
conditions of the sequential reversals appearance and 
erasing from the memory cannot be considered here; 
largely, they are analogous to those used in the case 
of the similarity principle formulated for the 
structural model of medium [1,2].- 

4. On the computational procedure 

The characteristic functions RF Ws,T)) and 
R=f(E) be used as the identification functions for the 
suggested macro-model. The first one can be 
determined by process of scaling over dependence of 
secondary creep rate of the material on elastic strain 
r and temperature T(p'=p(r, T)): 

4P(x,T)=<p°(x,T)/<p0(b,Tt). (9) 

b) 

To determine function / it is necessary to 
analyze the states of the structure under initial 
loading characterized by the two different conditions: 
a) supposing perfect elasticity- (<P=0) - to connect 

parameters of external thermo-mechanical action 
with loading parameter R; 
be based on the given RF (i.e. determined by 
expression (9)) and the basic value of parameter 
E"=b. Variation of the external load rate should 
be fitted in such way that the actual power strain 
rate in unsafe point x0 be approximately constant: 
then, this value is accepted as the basic one 
(£*=£).   The  RF  here  is  supposed  to  be 
independent on temperature (T=Tt). 

Comparing    the    results    one    can    determine 
dependence (3) between parameters R and E. 

Note, that there is no necessity to prescribe the 
loading program for the basic computations in detail. 
It is enough to reproduce situations (i.e. external 
forces and thermal strains) which correspond to the 
extreme states in the IZ. 

5. Lifetime evaluation of a structure 

It is offered to use here the variant of LCF 
damage accumulation model associated with the 
structural (rheological) model of medium by 
utilization of identical state parameters (its initial 
version is discussed in [3]). 

It is supposed that total damage consists of 
"cyclic" part coa which is due to alternating inelastic 
strain, and the "static" one cos related with cyclic 

strain accumulation (below attention is attracted to 
the first part only). Experiments show that 
component aa should be divided, in its turn, into two 
parts which correspond to plastic and creep 
deformation processes, respectively (see Fig.l). This 
is conditioned by a specific effect: damage caused by 
creep under tension decreases after creep under 
compression (this peculiarity is often interpreted as 
«damage curability»). Thus we obtain: 

(10) 

In the most simple case of tension-compression 
loading cycle the suggested equations take the form: 

a) =Dp(s,TJva\pp\; 

6>'e=H(0c)De(s,T)va\p± 

(11) 

(12) 

here Di(s,T) are the damage functions depending on 
state parameters ^ and T (see p.2); the third state 
parameter is presented by relation v=pjr. (inelastic 
and elastic strains p.r. in point x0 should be account 
off from the last reversal point); H denotes Heavyside 
function {H(x)=0 at x<0, otherwise H(x)=Y). 

Inelastic strain rates p\  and p'c should be 

determined in accordance with the state equation 
(the similarity principle [1]) of the structural model 
of medium 

p'ß = 0ß (s, T)(l - <p'(E.m   (ß = p,c)        (13) 

where functions &p, $>c correspond to the two 
branches of the RF which are shown in Fig.l. 
Parameter v in equations (11), (12) is uniquely 
connected with argument EJK of state equation (8). 
It is important, that state parameters s and EJK for 
the IZ as a whole and for macro-stresses in point x0 

coincide. Due to this peculiarity the both 
computations concerning deformation kinetics and 
damage accumulation can be carried on in a parallel 
way. 

Identification of the model is reduced to 
experimental determination of damage functions 
Dß(s.T) and exponent a(T). The functions can be 
found from LCF tests data at varied deformation 
rates in tension and compression half-cycles: the 
LCF diagram exponent is determined by a slope of 
plotted in logarithmic coordinates. As an example, 
damage functions for a high-temperature Cr-Ni steel 
is shown in Fig.2. Note, that identification of the 
damage model can be simplified if piecewise-linear 
(line 2) or, all the more, piecewise-constant (3) 
approximation of the functions is used. 
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Fig.1.The damage functions 

Verification of the suggested damage 
accumulation model confirmed that it reflects the 
main LCF regularities [5] with quite satisfactory 
accuracy. Moreover, at loading programs which 
include hold-time periods and/or non-isothermal 
loading stages, numbers of cycle to failure predicted 
by the suggested model correspond to experimental 
data something better than other known damage 
models. Possibly, it is related with state parameters v 
and s has been adopted as defining for the damage 
process (as well as for viscous and plastic 
deformation processes). It has been shown [1,2] that 
the parameters can be interpreted in terms of physics 
of metals: the first one represents relative number of 
activated sliding planes while the second- relative 
loading intensity of the latter. 

6.Conclusion 

Due to the suggested generalized model of 
structure, the rather cumbersome methods which are 
used now for stress-strain analysis of inelastic 
structures subjected to variable repeated loading , in 
some actual cases can be substituted by procedures 
which need essentially less computational volumes. 
The approach has required use of some simplified 
assumptions, in particular, isochronism of strain 
reversals in all the points of the considered structure: 
the Masing principle validity for viscous solids; 
similarity of state of any structure with respect to its 
basic state which corresponds to initial loading stage. 
Verification of model has shown that the 
inaccuracies caused by the assumptions prove to be 
rather small. 

It should be noted that only cyclical component 
of a structure response (and accordingly LCF 
damage) is considered above: the static component 
(strain accumulation which often accompanies cyclic 
loading and can essentially decrease durability of 
structures) has not been taken into account. But in 
the case of local IZ influence of the latter on lifetime 

can be usually neglected. In more common cases, 
approximate limit strain accumulation can be 
determined accordingly to the acting loading cycle 
parameters using some special procedure [6]. 

This study is a part of the project sponsored by the 
Russian Fund for Fundamental Research (grant 
95-01-00230) 
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We have developed a thermo-hydro-chemo-mechanical constitutive model for decomposing high 
performance concrete subjected to high temperature. The model is based on the poroelasticity theory 
and includes analysis of the mass loss of the skeleton due to thermochemical decomposing, gas 
pressure inside the pores and stresses. The numerical results show the influence of the rate of heating 
and the values of the material parameters on temperature gradient, stress fields and water vapour 
pressure and especially the influence of the chemical shrinkage due to dehydration on the spalling. 
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1. Introduction 

Over the last few years, experimental studies have 
shown premature damage in certain high performance 
concretes (HPC) during exposure to high 
temperature. These types of concrete are dense, with 
a number of excellent properties, but the density is a 
potentiel problem with regard to fire resistance. High 
temperatures induce a loss of strength and stiffness, 
increase both the elastic deformability and the creep, 
alter the chimical-physical composition of the 
hardened mortar (transmigration and vaporisation of 
the free water, loss of the combined and adsorbed 
water, dissociation of the calcium hydroxide at 
450°C, shift from a quartz to ß quartz in the 
cristalline silicon dioxide at 575°C) [1], When 
concrete is exposed to high temperature, the liquid 
water in the concrete will change into water vapour. 
The dehydration of the C-S-H also produces a water 
vapour. These two phenomenon combined to the low 
porosity and low coefficients of fluid transfer lead to 
a considerable increase of the pressure of fluid inside 
the concrete. Then the risk of spalling is very high 
even explosive spalling has been reported [2]. In 
order to get a better understanding of this 
phenomenon and a greater degree of predictability, it 
is necessary to acquire more knowledge about the 
thermo-hydro-chemo-mechanical mechanisms that 
cause this kind of damage. 

2. Mass Conservation and Thermodynamic 

We have developed a thermo-hydro-chemo- 
mechanical constitutive model for decomposing high 
performance concrete subjected to high temperature 
and overall loading. The model is based on the 
poroelasticity theory and includes analysis of the 
mass loss of the skeleton due to thermochemical 
decomposing, gas pressure inside the pores and the 
thermal stress. The underlying ideas to model such a 
dehydration in the framework of reactive porous 

media are mass conservation considerations and 
thermodynamics of open porous media. For the 
general theory of open reactive nonsaturated porous 
media, the interested reader is referred to Coussy 
[3,4]. At the level of the porous media, the 
dehydration may be roughly viewed as follows: the 
reactant phase corresponds to the hydrats and the 
product phase to the free water vapour. Let ms and ms 

be respectively the masse increase of fluid and the 
mass loss by the skeleton. The mass conservation for 
each phase reads as follows: 

dmf 
dt 

dms 

dt 
where m° is the rate of mass of fluid produced by the 
dehydration and -DivM is the external rate of fluid 
mass supply. Equations (1) and (2) give: 

dm 
 = -DivM (3) 
dt 

where m = ms - ms is the mass increase due only to 
the external flow of fluid. 

Using thermodynamics of open porous medium, 
the second law of thermodynamics can be writen as 
follows: 

- = -DivM+nr 

-=m 

(1) 

(2) 

a:E-1'-ST+g«1m«-gn m' 

(4) 
-— -GradT-— Gradp>0 

T ps 
where    an    overdote    denotes    time    derivation; 
c, S and gi, are   stress   tensor,   entropy   and   free 
enthalpies per unit mass, they are the thermodynamic 
forces associated in dissipation to the rate of the 
strain tensor £, temperature T and mass mJ (j = g, s); 
and Q and M are the vectors of the heat flux and the 
fluid flux. 
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<(>; =a:£-¥-Sf+g^mg-g^ihs is the dissipation 
related to the intrinsic mechanisms; 

<t>d =-(gm-gm)m° is the dissipation associated to 

the dehydration reaction;  fy, =-— GradT  is the 

dissipation associated with the transport of heat and 
, M  _   ,  

<Pf =—-Gradp is the dissipation associated with 
P8 

the transport of fluid. 

Substituting equation (2) into (4), the second law 
of thermodynamic can be written as: 

g:£-y-Sf+glm-^GradT-—-Gradp>0 (5) 
T p8 

A comparison between (4) and (5) allows us to 
consider the mass loss ms as an internal variable, 
denoted in the following by x and its associated 
thermodynamic force by A. A is the affinity of the 
chemical reaction of dehydration and x its reaction 
rate (because its evolution cannot be controlled by 
external flow). The thermodynamics forces derive 
from free energy ¥ = »P(e,T,m,x). 

Classically, we obtain: 
__w    _    w     g   ay   A    ay ^ 
°-lT'   S = -3T-;   - = 3nT;   A = -^T(6) 

3. Constitutive equations 

To complete the description of the mechanical 
behaviour, we have worked out from specifying 
expression of free energy of the system a constitutive 
equations in the framework of physical linearization 
and infinitesimal transformation: 

m Y 

a = a0l+^tre+2(iE-Mb—l-3aK91-o)4-l (7) 
Po =      P§ 

gm=gS1-4btrs-(s°-.)e+-iirm+8-^(8) 
P° (P8)    .    (P8)" 

S = S0 + 3aKtr£+-£-e+(s° -f/jm+yx (9) 

(10) A = A0+—«+76-8-25---:-^ 

"• (4    (PS) 
By using the saturating fluid state equation: 

dp dSm =—~ smd9, equation ( 8) becomes: 

p = po - Mbe+pg/e + M—+8— 
Po      Po 

where p is the pore pressure and p0 the pore pressure 
at the initial time. 

(11) 

X,\x are the lame coefficients, Mis the Biot 
modulus, b is the Biot coefficient, a is thermal 
dilatation coefficient, K is the bulk modulus, CE is 

the volumic heat capacity, T0is the initial 

temperature, s£, is the initial mass entropy of fluid, £ 
is the latent heat of increasing fluid mass. 

3.1.2   The characteristics related to our model: 
The variation of pore pressure of fluid due to the 

external increasing of the mass m is the same than 
associated to the internal increasing of mass due to 
dehydration x The coefficient Scan be then 
identified to M. 
T0y is the latent heat of dehydration: it represents the 
consumed heat by the dehydration reaction to produce 
a unit mass of water vapour. 
Equation (7) inverted shows that the volume strain 
related to chemical reaction of dehydration is: 

c      tö   X 
trec=-—. (12) 

Kpo 
We can distinguish in the last expression two 
different contributions; one is due to the internal 
supply of mass fluid in the porous space, the other is 
induced by shrinkage effect related to chemical 
volume change (dehydration shrinkage). Indeed, 
equation (12) can be written as follows: 

tre' 
Mb x    „_ x 

K PI PS 
(13) 

where the coefficient   ßmay be considered as a 
chemical-dilatation coefficient. 
x is   a   material   parameter   which   expresses   the 
thermodynamic   inbalance   between   the   chemical 
constituents involved in the dehydration reaction. 

4. Evolution laws 

4.1       HEAT CONDUCTION LAW AND MASS TRANSFER 

For the temperature evolution, Fourier law is 
adopted (14). The mass transfer in the concrete is 
gouverned by the Darcy's law (15) 

Q = -C grade (14) 
M 

■ = -K gradp (15) 

where C is the thermic conductivity and K is the 
permeability coefficient. 

4.3 KINETICS OF DEHYDRATION 

An evolution law of the Arrhenius type is adopted 
for the kinetics of dehydration. If the degree of 
conversion for the reaction is denoted by c, the 
Arrhenius kinetic reaction equation is given by: 

3.1 SIGNIFICANCE OF MATERIAL CHARACTERISTICS: 

3.1.1   The classical characteristics: 
— = -.20c exp - 
dt °       \   RT 

(16) 
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where AQ,Ea,n and Rare, respectively, the reaction 
rate constant, the activation energy, the order of 
reaction and the universal gas constant. 

If the heating rate is constant, we derive from (16) 
and the initial condition c = 0 [5]: 

( i "N 
f a.l 

x = xf 
Hl + Oi-DÄLgCy)11-" 

hR 
v 

(17) 

J 

where g(y) = - I du +   f du- 
J   u J   u 

V J 

-yo 

\i» 
yo 

j 

E E 
y = —-, y 0 = —— ,T0 is the initial temperature, h is 

RT RTQ 

the constant heating rate and xf is the total mass loss. 

5. Equation discretization and numerical solution 

The numerical solution is carried out by using 
finite element technique (2D dimension, 
axisymmetric and plane stress problems are treated). 
A system of matrix differential equations is obtained 
and may be integrated in time by using Crank- 
Nicholson implicit algorithm. Note that the problem 
is nonlinear since the material parameters are 
temperature dependant. Therefore at each step of 
Crank- Nicholson algorithm, Newton-Raphson 
procedure is used. After solving the differential 
equations in terms of displacement, pressure and 
temperature, the strains and the stresses are calculated 
using equation (7). A numerical study have shown 
that the results are time step independant. 

6. Numerical computations 

The numerical simulations has been performed to fit 
experimental data that are available in the literature 
[6] in the case of HPC cylinders 16x32 subjected to 
different constant rate of heating on their surface. The 
classical poroelastic material parameters used in our 
numerical study has been collected from the literature 
[3, 6]. The reaction rate constant, the activation 
energy and the order of reaction AQ, Ea,n has been 
determined to obtain a good accordance with the 
experimental results obtained by [6] (see Fig.l.). The 
parameter y has also been numerically determined 
such that the calculated temperature gradient in the 
specimen is in agreement with the measured 
temperature gradient (see Fig.2.). 

Temperature Dependance of material parameters: 
Young modulus E = Eo*( 1 - (T - 20)*0.46/480) 
Bulk modulus of concrete K = E/(3*(l - 2 v)) 
Bulk modulus of water vapour considered as ideal gas 
Kg = p;<)) = (|)o*(l.+x/1000.) 
b = 1-K/Ks; M = l./((b-<|))/Ks + <t> / Kg) 
pg= (18*10-3 /8.3)*p/(T + 273) 
C£ = p *(900.+80.*T/120.- 4.*(T/120.)2) (J.m\°C1) 

C = 2. - 0.24*T/120.+0.012*(T/120.)2   (W.m^'.-C1) 
Dynamic viscosity of water: T\ = 3.85*10"14*T+10'n 

(kg-nrV1) 
Permeability coefficient K = K, /T| 
At the room temperature: 
Eo=56.7 Gpa; concrete density: p = 2500 Kg/m3; v = 
0.19; bulk modulus of solid: K, = 72.5 Gpa; a = 
0.8*10-5 "C1; ß = -O.inO-5;/ = 463 J.kg,;Y= 4*106 

J^C'kg"1; porosity: ty0 = 0.06 and Intrinsic 
permeability: Kt = 10"22 m2. 
The numerical simulations show that the chemical 

dilatation coefficient ß has a great influence on the 
state of stress in the specimen. Indeed, when ß varies 
from the value 10"6 to 8.10'6, the axial stress at the 
heated surface of the specimen changes from a 
compressive state to a tensile state for temperature 
higher than 180°C (see' Fig.7.). Furthermore, the 
value of this parameter can be considered as 
responsible of the explosive spalling reported in the 
literature since for some values of ß, the axial stress 
exceeds the tensile strength of concrete. Another 
numerical study have shown that a great heating rate 
may induce the explosion of the specimen (Fig.4.- 6.). 

jOOO 

200 400 600 
Surface temperature (CC) 

Fig.l. mass loss in HPC concrete specimens heated at 
1 °C/mn: measured by [6] and calculated. 

O —• f. -v VO 00 

Distance from heated surface (cm) 

Fig.2. Temperature difference between the center and 
the surface of the specimen heated at l°C/mn. 
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Fig.3. Pressure on a radius of the specimen heated at 
rC/mn. 
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Fig.4. Vapour pressure at the center of the specimen 
subjected to different rate of heating. 
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Fig.5. Axial stress vs. Radius at different surface 
temperature (rate of heating = l°C/mn). 
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Fig.6. Axial stress at the center of the specimen 
subjected to different rate of heating. 
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Surface temperature (°C) 

Fig.7. Axial stress at the surface of the specimen for 
different value of the chemical dilatation coefficient 

(rate of heating = 1 °C/mn). 
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On the Quantitative Predictions of Residual Stresses in a Quenched Strip of 
Amorphous Plastics 

EL Ghoneim 

Department of Mechanical Engineering, Rochester Institute of Technology 
Rochester, NY 14623 USA 

This paper addresses some of the challenges feeing analysts when attempting to quantitatively 
predict the development of thermal residual stresses in processed amorphous plastic products. In 
particular, the paper focuses on the importance of selecting the appropriate constitutive equations 
describing the material behavior and the importance of the accurate assessment of the material parameters 
involved. An illustrative example is presented. The example illustrates the effect of the choice of the shift 
function on the residual-stresses development in a free quenched one-dimensional polystyrene strip. 

Key Words: Thermal Residual Stresses, Viscoelasticity, Quenching, Volume Relaxation. 

1. Introduction 

The quantitative prediction of the residual- 
stresses buildup in processed plastic products is 
very difficult. For example, in the case of 
injection molding, analysts have to adopt 
appropriate constitutive equations which capture 
the nonlinear, anisotropic, viscoelastic behavior 
of the resin over the wide range of applied 
temperature and pressure. Also, a proper 
material-property database is needed in order to 
assess the material parameters existing in the 
constitutive equations. Moreover, the simulation 
program has to account for the fountain-flow 
and the boundary-conditions effects. 

This paper discusses the importance of the 
appropriate choice of the constitutive equations 
and the material-parameters assessment on the 
qualitative prediction of the residual-stresses 
buildup. To simplify the task, the paper focuses 
on the residual-stresses development in a one- 
dimensional quenched strip. In this case the 
problems of the surface boundary condition and 
fountain flow are obviated, the effect of the 
pressure can be ignored, and the flow-induced 
anisotropy is alleviated. 

2. Constitutive Equations 

For the one-dimensional viscoelastic 
behavior we adopt the Boltsman integral [1], 

J de. \ ctev 
o=efu<t-9--d&-2fu<t-S)--fdg     (i) 

8T=)jct-0%-dg+toCt-9^dg       (2) 

where T is the absolute temperature, o is the in- 
plane stress, e is the in-plane strain, s» is the 
dilatational strain, am is the mean stress, u<t) is 
the shear-relaxation modulus, J(t) is the 
dilatational-creep compliance, and a(t) is the 
"thermal-expansion" compliance. Also, we 
assume 

H(t) = fi1-(^-^g)M](t) (3) 

J(t) = K,-(KI-Kg)M2(t) (4) 

a(t) = a,-(a,-a )M2(t) (5) 

where ut, KI and oti are the shear modulus, 
compressibility and volumetric thermal- 
expansion coefficient for the liquid state, 
respectively. Similarly, Ug, Kg and 04 are for the 
glassy state. M,(t), and M2(t) are the shear- 
relaxation and the dilatational-creep functions, 
respectively [2]. They are taken as 

M, (t) = S(ws).Expj }py-\, and (6) 

M2(t) = Z(wD).Exp|l^y| (7) 

where WJ and x, are the weighting parameters 
and the relaxation or retardation times of mode i 
for the deviatoric (subscript S) and the 
dilatational (subscript D) domains. 
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Furthermore, we assume that the material is 
thermorheologically simple, i.e., M,(t) and H(t) 
shift without distortion according to the 
following relation, 

(*D)J = aD(xD)rj and(Ts). =as(xs)r.     (8) 

where the subscript r denotes the reference state, 
aD and as are the dilatational and deviatoric 
(shear) shift functions, respectively. They 
depend on the temperature, pressure and the 
structural state of the material. The 
thermorheologically-simple material assumption 
(equation S) implies that M] as well as M2 has 
the same shape at every thermomechanical state 
on a logarithmic time scale and that at different 
temperatures Mj as well as M2 may be brought 
into coincidence by a parallel shift along the 
logarithmic time scale producing a master 
curve. It should be mentioned that for some 
polymers and within certain temperature and 
pressure range, distortion of the shear-relaxation 
function has been experimentally noticed [2]. 

Following the argument of Espinoza and 
Aklonis [3], the relaxation and retardation 
spectra are assumed to move identically and 
without distortion, that is, aD = as = a. The 
observation that the shear-relaxation modulus 
[4] as well as the dilatational-creep compliance 
[5], of some amorphous polymers in isothermal 
volume relaxation experiments, shifts along the 
logarithmic time with the change of the specific 
volume supports this assumption. Furthermore, 
the shift function is assumed to depend on the 
temperature and the structural state. Two shift 
functions are studied in the current analysis in 
order to demonstrate the effect of the shift 
function on the quantitative prediction of the 
residual-stresses buildup. The two functions are: 

1. Log(a) = 
Q/T 

1-T2/Tf    Tr-T2 
(9.) 

Q Q 2- kfcGO=zr*zr- zr^zr ** a * ac, Tf-T2      Tr-T2 

andLog(a) = Q'/Tf-Q'/Tr      foraäac   (%) 

where Q and T2 are material constants, and ac is 
the critical value of "a" which defines the 
transition between the melt and the glassy states. 
Q' is chosen such that the slope of Log(a) is 

continuous at ac; Q' = Q{Tr/(Tr-T2)}2. 

Equation (9,) is a modification of the Gibb's 
function. It reduces to the well-known Williams- 
Landel-Ferry (WLF) equation in the equilibrium 
state when Tf=T and to the Arrhenius form in 
the glassy state when Tf is constant [6]. 
Equation (9b) is a modification of the shift 
function adopted by the Cornell Injection 
Molding Group (CIMP). This equation fits 
reasonably well the experimental shift data of 
polystyrene and polycarbonate [7]. However, the 
equation is composed of two different 
expressions applied at the two different regions 
and consequently is numerically inconvenient 
The Active temperature Tf represents the 
structural state and is taken to be proportional to 
the   transient   specific-volume   change   [1], 

Tf=T0+t{l-M2(t-9} ST 
2Vi-y/-^-d| (10). 

The best choice of the variable to represent the 
structural state is still a debatable issue, 
however, the Active temperature has been 
recognized as one of the appropriate choices [6]. 

Determination of the residual stresses in a 
free-quenched strip requires the simultaneous 
solution of equations (1) and (2) augmented 
with (3)-(10) at all material points (layers) 
across the thickness of the strip and over the 
whole history of quenching. Evolution of the 
temperature profile can be obtained by applying 
the one-dimensional heat conduction equation 
with free convection boundary conditions at the 
surfaces. The strain is solved for iteratively at 
any time by enforcing the free-end boundary 
condition, i.e., the lateral force to vanish. 

3. Material Parameters Assessment 

As mentioned before, we can solve for the 
evolution of the in-plane residual stresses across 
the thickness of the strip throughout the history 
of quenching - provided that all material 
properties are available. These material 
properties are: 

1. the compressibility and volumetric thermal- 
expansion coefficients for the glassy (Kg and 
otg) and the melt states (KI and aO; 

2. the shear-relaxation modili (|ig and nD; the 
shear-relaxation spectrum, i.e.,   (ws)j and 
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(tg);; and the dilatational-creep spectrum, 
i.e.,(wD)iand(TD)i; 

3.   the material constants of the shift function, 
Q and T2. 

The coefficient of thermal expansion and 
the compressibility can be obtained from the 
PVT diagram, using Tait's equations. The 
shear-relaxation and the dilatational-creep 
spectra can be determined from curve-fitting 
experimental data of the shear-relaxation 
modulus and dilatational-creep compliance, 
respectively. The shift function used to generate 
the master shear-relaxation and/or dilatational- 
creep compliance defines the values of Q and T2. 
Fitting the isothermal volume-relaxation 
experimental data can also be used to generate 
the dilatational-creep compliance and the 
constants Q and T2. It should be mentioned that 
although, in principle, assessment of the 
material properties is a direct task, finding 
reliable and consistent experimental data poses 
one of the greatest challenges to obtaining 
reliable and accurate values of the material 
parameters. 

4. Example and Discussion 

Prediction of the residual stresses buildup in 
a 2.6 mm thick polystyrene strip from 130 ° C 
to 23 ° C is presented. The example is meant to 
illustrate the importance of the proper shift 
function choice. It is imperative to acknowledge 
that the material parameters of the constitutive 
equations should not be determined by curve- 
fitting of the primary targeted experimental 
data. That is, for the current example, we 
cannot use the experimental data of the residual- 
stresses profile of the polystyrene strip to obtain 
any of the material constants. They should be 
obtained from completely different sets of 
experimental data. 

The material parameters adopted for the 
current analysis are presented in Tables 1-3. 

Table 1 Tait's constants 

Table 2 shear-relaxation and dilatational-creep 
parameters (Tr= 100 °C). 

Constant Glass Liquid 

Ci (cm3/gm) 0.986 1.007 
Cz (cm3/gm-°C) 2.44 10"1 5.79 10-4 

C3 (Pa) 2.26 108 2.02 108 

C4 (1/°C) 1.36 103 3.00 10-3 

ws xs(sec) wD xD(sec) 

0.587 3.021 0.1 2.130 10"5 

0.348 2.892 10' 0.07 8.520 10-4 

6.232 10"2 1.228 102 0.11 7.455 10"2 

2.736 10'3 1.557 103 0.17 1.278 
4.191 10-4 3.474 104 0.165 2.556 
1.111 10"4 1.071 106 0.385 34.08 

1.091 10-4 2.426 107 M*(MPa) 745 
4.964 IQ-5 2.096 108 w(MPa) 0.0 

Table 3 Shift-function's parameters 
Model-1 Model -2 

O(K) 1255 1372 
T2(K) 326.7 334.3 

Tait's constants are obtained from 
cumulative PVT data from literature for 
commercial-grade polystyrene. Shear-relaxation 
parameters are determined from curve fitting of 
the experimental data from Alkonis and 
Tobolski [8], and the dilatational-creep 
parameters are taken from Greiner and 
Schwarzl [9]. The parameters Q and T2 are 
determined by best- fitting of the volume 
relaxation prediction of the current model with 
the corresponding experimental data a of 
Greiner and Schwarzl. 

0.053 

0.S51 

£   0.945 

1.00E*0?       1.0DE*03       !ME*Ot        1.00E*05       1.O0E-OB        1.006*0? 

time (sec) 

Fig. 1 Volume-relaxation for polystyrene upon 
quenching from 115 °C to indicated 

temperature 

The predicted results using the shift 
functions (9„), and (9b), labeled predicted-1 and 
2 respectively, are shown in Fig. 1. The 
corresponding predicted shift in the shear- 
relaxation modulus, for both shift functions, 
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with aging time are also compared with the 
relevant experimental data of Matsuoka [4] and 
displayed in Fig. 2. It should be mentioned that 
the second set of data (Fig. 2), are used to 
readjust the material parameters Q, T2 and the 
average value of the shear-relaxation and creep- 
retardation times. It can be observed from the 
results that model 2, using equation (9b), can 
match the experimental data better. However, 
both models can not generate accurate fits. 

».906-01 1.ME-C3 1.00E-M I.SOE-O« 1.90E*05 

Time (sec) 

Fig 2 Shear-relaxation modulus for polystyrene 
annealed at 90 °C for different times. 

Once the material parameters are 
determined, the constitutive equations proposed 
are used to predict the residual-stresses buildup 
in the freely quenched plate, and the predicted 
results are compared with the corresponding 
experimental results of Isayev and Crouthamel 
[10]. The predicted and experimental results are 
displayed in Fig. 3. It is clear that both models 
overpredict the residual stresses, and that the 
prediction of model 1 is substantially higher 
than that of model 2. 

■ISLOCO 

-20400 

-2S.O0O 

—m— Predicted-1 

—o—Predicted-2 

Experimental 

Nondimensional thickness (z/h) 

Fig. 3 Residual-stress for a 2.6 mm thick 
polystyrene plate quenched form 130 °C to 23 °C 

5. Conclusion 

The results presented in figures 1-3 are 
consistent and indicate: 1) both models of the 
shift functions could not match the experimental 
data required to obtain the material parameters 
(figures 1 and 2), and could not predict good 
residual stresses; and 2) model 2 matched the 
experimental data used for the parameter 
assessment better than model 1, and predicted a 
better residual-stress profile. These observations 
strongly suggest that the choice of the shift' 
function is important; the more accurate the 
shift function is, a better prediction of the 
residual stresses is produced. 
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FABRICATION PROCESS TAILORING TO MINIMIZE 
THERMAL RESIDUAL STRESSES IN 

METAL MATRIX COMPOSITES 

Christos C. Chamis 
NASA Lewis Research Center 

Cleveland, Ohio 44135 

Metal-matrix composites (MMQ are potential candidate materials for applications requiring high 
operational temperatures (400 to 1100° Q. In addition, high specific strengths and specific moduli 
are possible because the densities of the reinforcing materials are relatively low. This combination of 
properties makes these materials especially attractive for use in the aerospace industry. But, a crucial 
problem limiting the use of many MMCs is the high residual (filial) thermal micro-stresses developed 
during the fabrication process, as a result of the large temperature differential and the mismatch 
between the thermal expansion coefficients (CTE) of the fiber and matrix In order to control the high 
thermal residual micro-stresses in unidirectional MMCs developed during the cooling phase of me 
fabrication process, a computational method is presented to optimize the fabrication process of MMC 
and the thermomechanical properties of a compatible fiber-matrix interphase (compliant layer). 

KEY WORDS: Graphite-fiber, copper-matrix, composite-mechanics, ««linearities, micro-stresses. 

Introduction 

The objective of the method is to minimize the 
residual mkrostresses at the end of the fabrication 
process ^.e., phase 3 shown in Figure 1) by 
«yrimiring the temperatme and cnnsnliriarinn 
pressure time profiles (histories) concurrently with 
the compliant layer properties (modulus, CTE, and 
strength) and other composite parameters 
(compliant layer thickness and fiber volume ratio), 
while the in situ constituent materials integrity is 
ensured throughout the process. Tailoring of the 
fabrication process has resulted in reducing residual 
microstresses in the matrix [1], The addition of a 
suitable interphase placed between the fiber and 
matrix may produce MMCs with further reductions 
in the thermal residual stresses [2]. The present 
computational method was developed to con- 
currentiy tailor the fabrication process and the 
interphase of MMCs for nnnimal residual stresses. 

The thermomechanical response of MMCs 
during cool-down of the fabrication process is 
simulated based on unified nonlinear micro- 
mechanical encoded in METCAN (metal matrix 
composite analyzer [3]. The theory is based on a 

micromechanics unit cell shown in Figure 2. The 
nonlinearities due to temperature and stress in the 
three different phases (fiber, matrix and interphase 
are described by a generic multi-factor interaction 
model of product form (MFIM) as follows: 

TU -T' 
n<? 

'Mi % JL s/.J 
/ = m, d,f 

where P ^ is any themomechanical property 
at time t in phase i m or d P« is the corre- 
spond^ reference property; TMiisthe 
temperature at which mechanical properties 
approach zero, S Sis the strength at time t; 
o 'i is the microstress in the i phase at time 
t; and the exponents q and p are selected so 
that P * i passes through P« and some other 
point Pi". 

The minimization of residual micro- 
stresses is formulated as a constrained 
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nonlinear mathematical programming (NLP) 
problem and is numerically solved with the 
modified feasibility directions method. 

• Objective function: n*t<max{tt»1CjB(11 ,«)2«5n«2l) 

mm© 

subject to constraints:  mp^it,   and ft^ff^s? 

Upper and tower bounds: 
Fabrication process parameters: tsTsTu 

0SpS34SMPa 
10 sec sis 18 000 sec 

Interphase property:    34.6 GPaS 5,5 220.8 GPa 
1.69emtanrCS<^s67JcnVcmrC 
34.5MPaS%S414.0MPa 

Micromechanical parameters:    0.05 s J^ s 0.15 
0.055 A* 50.15 

An ultra-high modulus graphite (P100)/copper 
MMC was used to demonstrate the proposed 
method for the concurrent optimization of the 
process and interphase properties. Figure 3 shows 
the current and the resuhartoptinnim fabrication 
processes for Case 1 (fabrication process opti- 
mization only) and Case 2 (concurrent optimization 
of the fabrication process and interphase charac- 
teristics). In both cases the optimized processes 
fellow similar patterns during the cool-down phase. 
Compared to the current process, two significant 
differences exist that lead to the reduction of the 
final residual matrix microstresses: (l)The 
optimization temperature histories in Figure 3(a) 
decrease more rapidly to room temperature and are 
held constant until the end of the process; (2) as 
shown in Figure 3(b), the predicted optimal con - 
softdation pressure histories gradually increase as 
the consolidated temperature drops, reaching 
significantly higher values than die pressure of the 
current process and finally dropping to zero. More 
interestingly, the temperature drop takes place when 
the pressure is high, such that the thermal stresses 
are forced to develop when the matrix and 
interphase are highly nonlinear and nearly in a flow 
state; hence, high strains do not cause high stresses. 
The pressure is removed when the temperature 
reaches room values as it does not contribute 
further. Tbis illustrates the importance of the 

respective microstresses value of the current 
process, fo comparison, Case 2 Itad a 41 rxreent 
reduction for OVBMI. The additional reductions in 
Case 2 are attributed to the interphase optimization. 
The optimum microstress OBA» in Case 1 was 
nearly equivalent to that of the current process; 
however, the final microstress 0^*22 in Case2 
decreased by 24 percent because of the optimized 
interphase properties.  Compared to the initial 
properties of the intqihac^ (assumed same as 
copper), the optimized interphase has (1) a 
significantly higher CTE, (2) a slightly higher 
modules and strength, and (3) an increased 
interphase thickness and fiber volume ratio. 

The final tongmnfinal composite properties for 
Cases 1 and 2 increased in stiffness and strength 
(tensile) along with the CTE when compared to the 
current process. Also, Case 2 is superior to the 
current process and Case 1; it showed the most 
improvement in lowering the residual stresses and 
improving the final composite material properties. 
In conclusion, the results indicate that consolidation 
pressure histories are the most important fabrication 
parameters, while the CTE is the mast gignrfirant 
interphase property. 
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The corresponding longitudinal and transverse 
matrix microstresses, OaAii and 0W22, are shown 
in Figure 4. The final residual microstress a«,*!! in 
Case 1 decreased by 21 percent compared to the 
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Figure 1. Typical föbrication process cycle for graphite/copper composite. 
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Figure 2. Micromechanics cell and regions for metal 
matrix composite mechanics. 
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This paper treats how to remove residual stresses which occur in plates due to welding. The 
analytical model is a rectangular thin plate which has residual stresses previously due to welding. And 
it is subjected to heat supply in order to remove residual stresses. We make use of the strain increment 
theorem for the theoretical analysis of thermoelastoplastic deformation of the plate, and introduce two- 
dimensional treatment based on Kirchhoff-Love's hypothesis. The analytical solution is obtained for 
the thermoelastic deformation. On the other hand, for the plastic deformation, the solution is 
evaluated with the aid of the finite difference method. Strain increment is calculated by successive 
elastic solution. Some numerical calculations are carried out in order to investigate how heating 
conditions such as heating time, heating area, heating position and the amount of heat influence on 
removal of residual stresses. 

Key Words:   Residual Stresses, Welding, Thermoelastoplastic Problem, Theoretical Analysis 

1. Introduction 

This paper treats how to remove residual stresses 
which occur in plates due to welding. 

The welding process has been used for the 
fabrication of various structural elements. But the 
process causes plastic strains, especially compressive 
one, in the elements because they are subjected to a 
large amount of heat in a small area. Moreover these 
plastic strains produce residual stresses in the elements 
when they are cooled to room temperature. And 
these residual stresses affect the behavior of the 
elements such as brittle fracture, stress corrosion 
cracking, fatigue and buckling. Therefore it is very 
important to remove residual stresses from the 
elements, and there are several kinds of methods for h, 
for example, anealing, applying mechanical tension and 
applying vibration. Since residual stresses are closely 
related to compressive plastic strains caused by heat 
loading, it is important to control! these strains in order 
to remove residual stresses. 

In the previous studies [1,2], we were concerned 
with some transient thermoelastoplastic bending 
problems. Li the studies, we found out that the 
compressive plastic strains caused by heat loading were 
controllable by heating conditions such as heating time, 
heating area and the amount of heat. 

Therefore, in the present study, we aim at the 
contrail of plastic strains by applying heat to structual 
elements under appropriate conditions in order to 
remove residual stresses. The analytical model is a 
rectangular thin plate which has residual stresses 
previously due to welding.   And it is subjected to heat 

supply in order to remove residual stresses. For the 
temperature field, the analytical solution is obtained by 
integral transforms [3]. And for the theoretical 
analysis of thermoelastoplastic deformation of the plate, 
we introduce two-dimensional treatment based on 
Kirchhoff-Love's hypothesis. The analytical solution 
is obtained for the thermoelastic deformation. On the 
other hand, for the plastic deformation, the solution is 
evaluated with the aid of the finite difference method 
because we make use of the strain increment theorem 
[4]. Strain increment is calculated by successive 
elastic solution [4]. Some numerical calculations are 
carried out in order to investigate how heating 
conditions such as heating time, heating area, heating 
position and the amount of heat influence on removal 
of residual stresses. 

2. Theoretical Analysis 

2.1   HEAT CONDUCTION PROBLEM 
We consider a rectangular plate as shown in 

Figure 1. 

Ö./. (*)g.Ö0 ^      -b/ 
J^" ■■!■■■■      ■■     ■   I        ■      II   ■■   ■   —iJ<       I   I I 

hx 

Q*fi ix)g, <y) 

Fig. 1   A rectangular plate with a partially distributed 
heat supply. 

Plate dimension is 2a x 2b x 2h.   Initial temperature 
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of the plate is the same as the temperature of 
surrounding medium which is kept constant. From 
time t = 0 to t = ta, the plate is subjected to a partially 

distributed and symmetric heat supply g,/, (x)g1 ( v) at 

the upper surface (z = ~h) and Q2f2(x)g2(y) at the 

lower surface (z = +k). After that, the heat supply is 

removed and the plate is cooled by surrounding 
medium. Let hz,hyhzUh.2 be the relative heat 
transfer coefficients on each surface. 
2.1.1. Heating Process. For the heating process, 
the heat conduction equation, the initial condition and 
boundary conditions are given, respectively as 

£L-J£L ^T ^T) 
-~K[<?x>+Jp'+J?) 

t=0 ; T=0 

£T 
dx 

dT 

dt 

x = ±a -±A,r=o 

(1) 

(2) 

(3) 

ey±h^° 
y = ±b (4) 

(5) 

where T, K and A are temperature change, the 
thermal drSusivhy and the thermal conductivity, 
respectively. By introducing the finite Fourier 
transform [3] over the variable x and y, and the 
Laplace transform over the variable / for the 
temperature function T(x, y,z,t), we can obtain the 

temperature solution in the heating process as 
T- 

iRlje] 

at      w 

ZI>A, cos(l„Jc)cos($-„j) 

GO 

+i£li^2Lcos(?^)cos(crKv) 

•{/4'cosh(&)+5'sinh(&)}] (6) 
Explanation of symbols in Eq. <6) is omitted. 
2.1.2.     Cooling Process.      T,  the  temperature 
change in the cooling process, satisfies the Eqs. (1), (3), 
and (4) whose solution is  T  instead of T, and 
satisfies the equations 

* = 'o  ;    T' = T[x,y,zsa) (7) 

dT 
z^h ; —+hz2r = 0 

(8) 

instead of Eqs. (2), (5), respectively.    Comparing 
equations for heating process and one for cooling 

process, we can find out that the temperature solution 
T takes the form 

T'^,y,2,t)=T(x,y,z,t)-T{x,y,z,t-tt))      (9) 

2.2 THERMOELASTOPLASTTC    BENDING 
PROBLEM 
2.2.1 Dermation of Basic Equations. In this 
subsection, we derive the basic equations which govern 
the thermoelastoplastic behavior of the plate. Here 
we consider the plate is free from traction. We 
assume that the plate is sufficiently tun. Therefore, 
we can introduce the assumption that the plane 
perpendicular to the neutral plane (z = 0) before 

deformation remains the plane perpendicular to it after 
deformation and that the axial stress ars is negligible 
compaired with other stress components. According 
to the assumption above, in-plane strain components 
are given as 

*»=*»o-«(w*) ; iU^x.y) (10) 
where eils denotes in-plane strain components on the 

neutral plane and w denotes deflection of the plate. 
If we define et and Aep

n as plastic strain already 

accumulated and plastic strain increment by increased 
thermal loading, respectively, the thermoelastoplastic 
stress-strain equations take the form 

where cr,y, and sv are stress components (o-= =0) 

and total strain components (ij = x,y,z), respectively, 

and a, £ and v are the coefficient of linear thermal 
expansion, Young's modulus and Poisson's ration, 
respectively.    Moreover,   S^   denotes Kronecker's 

delta. Now we define resultant forces and moments 
per unit width as 

and plastic and thermal resultant forces and monents as 

{M>,AM>} = £fj£>,Ae>}z<k 

NT=aE\Tdz 

(15) 

(16) 

(17) MT=xxEJTzdz 

If we combine Eqs. (10), <11) and integrate it in the 
domain -h<z<h, we can express e^0 by resultant 

forces defined by Eqs. (12), (14) and (16). From e^ 

above-mendioned and Eq. (10), we can represent rn- 
plane strain components by resultant forces and 
deflection w as 
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s _ 1+vL _#.-N*     +Ni+AN>) 

**    2hEp        1+v       "        1+v    j 

If we combine Eqs. (10), (11) and integrate it in the 
domain -h<z<,h with z multiplied, the resultants 
monents are given as 

*~c.-*f,4*U)-£ 
1+v     "     1-v 

*&*. 

1 m^^s. (U = x,y)(19) 
l+v{     "      1-v 

where £> is flexural rigidity of the plate denoted by 

E(2h) 
D = - (20) 

12(l- v2j 

Now we consider the basic equations for the in- 
plane behavior. Equilibrium equations and compati- 
bility condition in-plain direction are 

dN, 
-+ 2-=0 

dN„    dN„ 

dx       dy 

d2e„    82e„ 

dx       dy 

d2e„ 

-=0      (21) 

= 2- 
dy2      dx2        dxdy 

Eq. (21) is satisfied by the "resultant force function" F 
defined as 

AT = 
a2F _ d2F 

AT =- 
d2F 

(23) 
dy2   ' "■*■ dx"   ' -v      dxdy 

which takes the same form as Air/s stress function. If 
we combine Eq. (IS) and Eq. (22), we may obtain the 
equation of compatibility represented by resultant 
forces. Considering Eq. (23) furthermore, the basic 
equation for the in-plane behavior is obtained as 

V
2
V

2
F=-V

2
N

T
 -[gK(*.y)+*A*>y)]   (24> 

where V denotes the two-dimensional Laplace 
operator and the function gN{x,y) is defined as 

<     \   82N' ^K_2£1K (25) 
dy2       dx2     ~ dxdy 

and  AgK(x,y) is obtained by replacing N£ with 

dN*   in  the   above   equation.      The  boundary 

conditions concerning to the in-plane deformation are 
represented in terms of the resultant force function F 
as [5] 

dF 
dx 

dF 

x = ±a . = 0, F = 0 

y = +b 
dy 

= 0,F = 0 
(26) 

Equilibrium equations of resultant forces and 
monents which cause out-of-plane defbrmaton are 
given as 

'*,+£**.<, 
dx      dy 

dM„ . dMx v — = AT 
dM„    dMm 

(27) 

- = AT   (28) 
dx       dy     "'"  '    dx       dy     ' r- 

If we substitute Eq. (28) into (27) and consider Eq. 
(19), we can obtain the basic equation for out-of-plane 
behavior as 

DV2V2w = -r±-V2MT -[gM{x,y)+4lM(x,y)]{29) 

where the function gM{x,y) is defined as 

Id2/ \     2   d2ML 

1-v2 dy v   " '   1+v dxdy    K   ' 

and AgM{x,y) is obtained by replacing Mj[ whh 

AM£   in  the   above   equation.      The  boundary 

conditions concerning to the out-of-plane deformation 
are represented in terms of the deflection w as 

d2w) ^ Jd2W d2M 

MT 

1-v' 

Mj + ^    AM^ + vAM^ 

^     J^2w 
1-v2 

d2w 
dx2 

1-v2 

MT 

1-v" 

Af£ + iM£    Mf^ + vMf^ 

1-v2 

x = ±a; 

n & l^2w    .       .d2w\ 1 

1-v2 

dMT 

(31) 

v  dx 

[l-v2 dx^   "       »'   1+v  dy J 

1-v2 dx^    * "'   1 + v    dy 

y = ±b; 

2   dM$ 

v   dx 

2 4*^)1 

dy\dy2+^     V' dx2]      1-v  dy 

2.2.2. Analysis of Practiced Problem. In order to 
solve Eq. (24) under Eq. (26), we separate the resultant 
force function into elastic solution F' and plastic 
solution F* as 

F = F'+F" (33) 
F'   satisfies Eqs. (24), (26) without the function 

(32) 
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gn{x,y) and AgN(x,y), and can be obtained from 

Eqs. (6), (9) and (16) as 

to 

+Z W cosh(af>0+Bfafy sinh(af v)} cos(af x) 

CO 

+2 {Cf cosh(^r)+Z>;^xsinh(^x)}cos(yff» 

♦ZI 
erf. 

-/Ar(#„,^,0cos(^i)cos(^) 

-(34) 
4 ,Bf,Cf,Df are unknown constants and deter- 

mined by Eq. (26). Explanation of other symbols in 
Eq. (34) is omitted. On the other hand, F" satisfies 
Eqs. (24), (26) without NT, and can be obtained with 
the aid of the finite difference method. 

In order to solve Eq. (29) under Eqs. (31), (32), 
we separate the deflection into elastic deflection w' 
and plastic one wp as 

w = w'+wp (35) 
we satisfies Eqs. (29), (31), (32) without gM{x,y), 

4gj*(*,v), M* and AM?, and can be obtained from 

Eqs. (6), (9) and (17) as the similar form to Eq. (34). 
On the other hand,  w" satisfies Eqs. (29), (31), (32) 
without MT, and can be obtained with the aid of the 
finite difFerence method. 

2.3      STRAIN  INCREMENT   THEOREM  AND 
SUCCESSIVE ELASTIC SOLUTION 

Strain increment components can be calculated 
from von Mises yield criterion and Prandtl-Reuss 
equatons.       This   procedure   was   developed   by 
Mendelson [4].   We define "modified total strain''as 

4-»#-«? (36) 
Subtracting mean normal strain from diagonal elements 
ofEq. (36) leads to 

er=e;+Asp (37) 

where e^ and e* denote "modified deviatoric strain 

tensor" and elastic deviatoric strain tensor, respectively. 
According to Mendelson's procedure, Prandtl-Reuss 
equations represented only by strain components are 
given as 

4eJ=(^,/*„)■«; (38) 

where e„ denotes "modified equvalent total strain" 
and is defined as 

and Aep denotes the equivalent plastic strain 

increment. Let a0 and m be the initial yield stress 
and work hardening parameter, respectively, and let the 
uniaxial stress-strain relation take the form 

s=a/E ;(O-<£CT0)1 

B-{^lE)i<yJ<y0)-;{a>a0)\ ^ 
Then   Aep   is related to   e«   and the preloading 

equivalent stress <r<iW,and is expressed 

As   - 3g«-2(1 + y)^-,/g fdU P    3 + 2(l + v)/Ma,,_1/<r0r'-l}     <4I> 
The equivalent stress a, is defined as 

o.*pPW*t (42) 
where s^denotes the deviatoric stress tensor. 

Now, consider the culculation of the strain 
increment  which   is  caused   by  the  temperature 
increment from time t to t + At.   In the first place, if 
we assume Ae§ = 0, then the functions gN , AgN, 

gM and AgM are evaluated by Eqs. (25), (30) because 

s\ is already culculated.   Then, resultant forces N.. 

and deflection w are calculated from Eqs. (23), (24), 
(26), (29), (31) and (32) by the method which is 
described in the preceding section.    Therefore, the 
stress and the total strain components are culculated by 
Eqs. (11), (18), and the first approximate solution of 
As*,  can be calculated by Eq. (38).    Second, we 

assume  that   Ae'   takes  the value  of this  first 

approximate solution and proceed in a similar manner. 
This procedure  is  iterated  until   Ae*   converges 

sufficiently.   After convergence, we include Ae* into 

efj and proceed to the next time step from t + At 
iot+lAt. 
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Determination of Residual Welding Stresses under Consideration 
of Structural Transformations Using a Multi-Purpose Finite 

Element Program 
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Different austenitization temperatures reached at different locations during the welding pro- 
cess have a strong influence on the developing thermal stresses. Assuming the welding process 
as a decoupled thermomechanical problem, an approach based on a maximum-temperature 
cooling-time diagram has been made to determine the microstructure and hardness distri- 
bution in the HAZ as well as the residual welding stresses. Because of the high temperature 
and stress gradients laser beam welds on mild steel have been used to validate the model. 
The experimentally obtained data has been found in good agreement with the results of the 
finite element calculations. 
Keywords: welding, finite element simulation, structural transformation, maximum- 
temperature cooling-time diagram 

1. Introduction 
Welding residual stresses affect strongly the perfor- 
mance capability of the joined parts. Therefore the 
calculation of the temperature distribution and the 
resulting residual stresses is an important step in 
optimizing the welding process. Depending on the 
type of welded material microstructural transfor- 
mations can occur during heating (ferrite + per- 
lite -*■ austenite) and cooling (austenite -> marten- 
site, bainite or ferrite + perlite, depending on the 
temperature cycle), causing a redistribution of the 
thermal stresses and strains because of accompani- 
ing volume variations and changes of the material 
properties. 
Finite element simulations which consider micro- 
structural transformations during a heat treatment 
are in general based on the time-temperature- 
transformation diagram (TTT-diagram) [1,2]. For 
predicting the microstructure in the heat affected 
zone (HAZ) of a weld, special welding-TTT- 
diagrams have been developed [3]. The charac- 
teristic temperature cycle for the determination of 
those diagrams is a fast heating to an austenitiza- 
tion temperature of 1350°C and no holding time 
before cooling. Welding-TTT-diagrams neglect the 
real temperature profile that shows a gradient of 
the maximum temperature reached as a function of 
the distance from the weld center. In the case of 
high-energy-density-beam welding this gradient is 
very steep and, therefore, the spacial variation of 

the austenitization temperature is high in a narrow 
workpiece portion around the weld [4]. 

2. The maximum-temperature 
cooling-time diagram 

A rising austenitization temperature causes larger 
and more stable austenite grains and, therefore, 
during cooling a delay of the ferrite nucleation. The 
bainite and ferrite regions in the welding TTT- 
diagram are displaced to longer cooling times [5] 
(figure 1). 
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Figure 1: TTT-diagram for two different austeniti- 
zation temperatures (steel A in [5]) 

Using several TTT-diagrams for different austen- 
itization temperatures a maximum-temperature 
cooling-time diagram (figure 2) has been developed 
by [5] for a steel A (chemical composition shown 
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in table 1). This diagram reveals, depending on 
the maximum temperature reached and the cooling 
time between 800 and 500°C (Ar8/5), which part of 
the HAZ shows a martensite (M), a martensite and 
bainite (M+B), a ferrite and bainite (F+B), or a 
ferrite and perlite (F+P) structure, as well as the 
corresponding hardness distribution (figure 2). 

3 1200 
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© 1100 

I 1000 
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Figure 2: Maximum-temperature cooling-time dia- 
gram (steel A in [5]) 

3. The finite element model 
Assuming the welding process as a decoupled 
thermomechanical problem, the microstructure in 
the HAZ can be determined from a measured 
or calculated thermal cycle, using the maximum- 
temperature cooling-time diagram. This allows to 
perform the calculation of the mechanical stresses 
and strains with full temperature and microstruc- 
tural dependence: all material properties, especially 
the coefficient of thermal expansion and the yield 
stress are adapted whenever structural transforma- 
tions occur. This approach offers a great variety 
of applications, because it can be integrated in any 
two or three dimensional model of a multi-purpose 
finite element program (e. g. ANSYSor ABAQUS), 
it is independent of the type of welding process or 
heat treatment and can be used for every steel alloy 
with microstructural transformations, if the mate- 
rial data is known. 
Due to the high temperature and stress gradients 
laser beam welds on mild steel have been chosen 
as an example to validate the model. Any welding 
simulation is a highly nonlinear problem because of 
the temperature depending material data and the 
plastic deformations. To get suitable information 
about the microstructure, a large number of finite 
elements have to be placed in the HAZ, which is 
small compared to the overall dimensions of the 
joined parts. 
The laser beam welds presented in this paper were 
done on 50 x 250 mm plates of St 52-3 with dif- 
ferent thicknesses. Because of the small element 
width needed in the HAZ (0.1 mm) a fully three 

dimensional finite element simulation is very time 
consuming. However, the residual stresses that de- 
velop in long welds far away from the edges can be 
approximated by help of a two dimensional plain 
strain model. To achieve reasonable computation 
times, the results of the three dimensional temper- 
ature model have been transferred to a two dimen- 
sional plain strain model as shown in figure 3. 

plane of symmetry 

25 mm 
Figure 3: Finite element model (plain strain) for 
the stress-strain analysis 

4. Results and discussion 
The alloy chosen for the experiments is St 52-3 be- 
cause of its similar chemical composition and me- 
chanical properties to the steel A used by [5] (see 
table 1). 

Steel 

C 
Chemical composition [%] 

Si         Mn           P s 
steel A 0.16 0.40 1.50 0.008 0.024 

St 52-3 <0.20 <0.55 <1.60 <0.040 <0.040 

Table 1: Chemical composition of a steel A and St 
52-3 

The microstructure, hardness distribution and 
welding residual stresses for different welding pa- 
rameters and various plate thicknesses in the case 
of bead-on-plate laser beam welds have been com- 
pared with finite element calculations. As an ex- 
ample for the good agreement between experiment 
and numerical calculations one full set of results is 
presented in this paper. 
Figure 4 compares the width of two experimen- 
tally obtained and calculated HAZs. Even though 
the martensite region and the areas with bainite 
grains are of the same size, it is noticeable that the 
weld reinforcement is not comparable, because weld 
pool effects like the surface tension have been ne- 
glected. With increasing computer capabilities weld 
pool modelling can be added to the finite element 
model to get better results in the melted region. 
Because of the good accordance of the results for 
the microstructure, it can be expected, that the cal- 
culated hardness distribution is also in good agree- 
ment with the experimental data. The ultrasonic 
contact impedance (UCI) measurement shown in 
figure 5 and the line plots for the three selected 
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Figure 4: Figure 4: Comparision between the calcu- 
lated and measured microstructure for St 52-3 (left: 
d = 5 mm, P = 5 kW, v =1.2m/min; right: d = 6 
mm, P = 5 kW, v =1.3m/min) 

scanning lines in figure 6 reveal, that the chosen 
hardness for martensite of 450 HV should be low- 
ered in the simulations. The deviation can be ex- 
plained with the slightly differing chemical compo- 
sitions of steel A and St 52-3. 
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Figure 5: Comparision between UCI-measured 
hardness and the finite element result (St 52-3, d = 
5 mm, P = 5 kW, v =1.2m/min) 

The rise in the measured hardness near the top and 
bottom side of the plate can not be observed in 
the finite element result. It results from the fact, 
that the specimen was embedded in plastic while 
performing the UCI-measurement. 
In order to receive accurate results for the residual 
welding stresses, the effect of the increase in volume 
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Figure 6: Comparison between UCI-measured hard- 
ness and the finite element result along selected 
lines (St 52-3, d = 5 mm, P = 5 kW, v =1.2m/min) 

due to martensite formation has to be added to the 
normal thermal strain, causing an extra compres- 
sive stress that redistributes the thermal stresses. 
Figure 7 indicates that the X-ray stress measure- 
ments from the topside of the welded plate are in 
good agreement with the calculated results. The 
transverse stresses show a well developped compres- 
sive stress in the transformed area (the tensile trans- 
verse stress of about 110 MPa in the center of the 
weld shown in figure 7 is an experimental error, be- 
cause of the surface topogaphy of the weld seam). 
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Figure 7: Longitudinal and transverse residual 
welding stresses (St 52-3, d = 5 mm, P = 5 kW, 
v =1.2m/min) 
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5. Conclusion 

The decreasing austenitization temperatures occur- 
ing with increasing distance from the weld cen- 
ter, have a strong influence on the microstructural 
transformations in the HAZ. Combining several 
TTT-diagrams to a maximum-temperature cooling- 
time diagram allows this effect to be taken into ac- 
count. 
The welding process can be assumed as a decou- 
pled thermomechanical problem. Integrating this 
approach in a multi purpose finite element progam, 
enables the calculation of the thermal stresses and 
strains using material properties with the full tem- 
perature and microstructure dependence. The re- 
sults obtained are in good agreement with the ex- 
perimental data. 
In the literature only very limited data about the 
material properties as a function of temperature can 
be found, therefore, interpolations and extrapola- 
tions still have to be performed. As long as secure 
material data is not available a coupled thermal and 
metallurgical calculation like revealed in [6], does 
not appear to be not necessary. 
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Thermal Stresses Analysis of a Steps Axle with Boiling Boundary 
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Based on the practice of the steps axle workpiece during quenching, the increment form 

about thermal elastoplastic constitutive equation, including variable physical properties and 

phase transformation, is put forward and solved by means of Finite Element Method in this paper. 

The transient stresses field and the residual stresses field are obtained. The varied factors are 

discussed 

Key Word:    Thermal stresses   Phase transformation   Configuration factor   Quenching 

1. Introduction 

The steps axle is one kind of common metallic 

workpieces during quenching. When the steps axle is 

heated over the temperature of Austenite and kept for 

enough time, then put into the quenching medium 

along the line of axle vertically, the surface of work- 

piece is contacted directly with the medium, so the 

intense heat transfer is formed. During that course, 

the surface of workpiece is in the state of pool sub- 

cooling boiling[1l The inhomogeneity of cooling 

leads to the various temperature grade at the different 

points in the workpiece, which cause the various 

thermal stress. Meanwhile the heat radiation for the 

shape influence and the heat latent released by phase 

transformation producers influence the distributions 

of the transient stresses and the residual stresses 

and make the numerical solution more difficult. 

In this paper, on the basis of the previousPl,the 

transient temperature field of the steps axle was ob- 

tained under the pool subcooling boiling. The ther- 

mal elastoplastic constitutive equation, including 

variable physical properties and phase transforma- 

tion, is put forward and solved by means of Finite 

Element Method. The transient stresses field and the 

residual stresses field of the steps axle during 

quenching with water are obtained and the effects of 

phase transformation and shape are discussed. The 

results are satisfying. 

The metallic workpiece is shown as fig.l. The 

material is carbon steel, which consists of the follow- 

ing composition   (%):   C 0.44, Si 0.12, Mn 0.66, 

Fig. 1 The model and configuration factor schematic draw- 

ing 

P<0.035 , S<0.035. The temperature of heating is 

860  C, and water is acted as quenching medium. 

2. The variable physical properties, the configu- 
ration factors and the heat conduction governing 
equation 

2.1 THE VARIABLE PHYSICAL PROPERTIES 

During the quenching process of metallic work- 

piece, based on difference of the cooling velocity and 

the critical temperature, the high temperature Aus- 

tenite structure can be transformed into Ferrite, Pear- 

lite, Bainite, Martensite and a small amount residual 

Austenite structure. Because of different physical 

properties of the various structures, lead to difference 

of the transient stresses and the residual stresses of 

the steps axle workpiece. 

During quenching of metallic workpiece, the 

physical properties is a non-linear function not only 

of temperature, but also of phase transformation 

compositions. Put phase transformation conditions 

and phase compositions131 into the physical properties, 
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tiae expressions of physical properties can be written 
as following: 

k.L k.L 

k.L k.L 

t.i *.i 

(i) 

«=2Ä«z(^+(i - Erf&)»^ 
t.i k.L 

Where, #, CP, p, Eijmn, a sore heat conduc- 

tion coefficient, specific heat, specific volume, 

Young's model and heat expansion coefficient, re- 

spectively; gk
L, B,L are the phase transformation 

condition   and   the   phase   volume   fraction'31; 

heat conduction coefficient, specific heat, specific 

volume, Young's model and heat expansion coeffi- 

cient of Austenite under the corresponding tempera- 
ture respectively. 

For other physical properties, the expressions 
are similar to (1). 

2.2 THE CONFIGURATION   FACTORS 

Few persons consider the effect of the surface 

shape on workpiece during heat transfer. But it is 

proved by practice that because of the existence of 

radiation, while the each surface of workpiece re- 

lease heat energy, they absorb the heat energy radi- 

ated by other surface and the quantity of the ab- 

sorbed energy is relevant to surface shape of the 
workpiece to a great extend. 

Any point on the surface of workpiece can radi- 

ate energy in the manner of hemisphere, and the ratio 

of the energy that can reaches other surfaces of the 

workpiece to the total radiated energy is called the 

configuration factor of the point Obviously, the con- 

figuration factor is related to the shape of surface 
only. 

From the calculating expression of the configu- 
ration factor143: 

We    can    obtain     die    configuration    factor 
F<u A    With the same analytical method, the con- 

figuration factor F^^ can be obtained shown in 

Fig.2. 

S      10     15     20     2S 
Cott(fiiut£ (anil 

Fig.2 The configure factors 

2.3 THE HEAT CONDUCTION GOVERNING 
EQUATION SET 

In order to depict the course of heat transfer of 

the steps axle under the pool subcooling boiling more 

accurately, die following governing equation set'"3 

is used: 

dT 
^Cp-S7-*(iTT + 

d2T    13T    d%T 
dt dr1     r dr    d z2 ) 

-so{F - #(F, -IW(rj;) -Fd^y 1>n)] + pr 

8%L 

-k?L=h(.T)xr 
dn 

T((r,z),0) = f(r,z) 

(3) 

Fig.3   The distribution of temperature on the step section 

The equation (3) is solved by means of F. E. M, 

flie temperature field of   workpiece   can   be   ob- 
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tained. The trend of temperature varied with time and 
coordinates on step section are shown as fig.3. 

3. Thermal elastoplastic constitutive equation 
with the phase transformation 

4. The calculating results and discussion 

Based on the known temperature distribution, 
equation (9) is solved by means of F. E. M. The 
results are discussed as follows. 

Let yt and y?. stand for the elastic strain and 

temperature strain respectively. From (1), we can 
get: 

rl=)ast]dr 
0 

In which, Sy is the symbol of Kronecker. Dif- 

ferent the equation (4),we can get as follow: 

*r\~EjJla _*-*=-<, JIT (5) 

Adopt the isotropy strengthen model as this: 
ä = F(jdf",T) (6) 

Where ypl and ~ä stand for equivalent plastic 

strain and equivalent stress, respectively. Thus, we 
can get: 
da 3F   _ p.   & „ (7) 

Let y*j stands for the unite expression of all 
phase transformations  strain component and   ytj 

stands for the total strain. The increments form of 
them are dy^ and dyv [5]. Thus: 

<V,=<lf,+drf+dji+dy* (8) 
Put equation (5), (7) into (8), we can get: 

d<r.~EZ.\*r..- 
dEZ1 

—— <r- + °<8J5n W-dY". 

dö    „      ffi 
fo       *""  dT (9) 

8F     dö   E 

dy"+da„'   " 
dö 

dau 

Where E?mn is 

da 

ijmn ijtnn 1 — 
da 

■E fsv 
It 

da 
do„ 

SF      dö   _r 
+ - EL, 

dy*    dan 

da 
da-u 

(10) 

4.1 THE DISTRIBUTION OF THE TRANSIENT 
STRESSES AND THE RESIDUAL STRESSES 

In Fig.4,  crior,a g of different times on the 

step section are given: 
Fig.4 shows: 
(l)The transient stresses in different times are 

different, which expresses that the cooling velocity of 
different points are different on the step section. 

(2) The maximum of stresses appears during the 
time 5 - 20s. During this course, the center of the 
workpiece is in the high temperature plastic zone and 
the stresses of the points can be released due to metal 
plastic deformation. Meanwhile, the crack is readily 
formed as a matter that the surface is in low tempera- 
ture zone. 

(3) The maximum of  az, ur   aß appear 

mostly on the surface and near the surface, where the 
cracks are easily formed. 

(4) After 25s, the changing ranges of stresses 
descends gradually. After 40s, the changes will tend 
to stability and the stresses distribution tend to the 
residual stresses distribution. 

4.2 INFLUENCE  ON  STRESSES  FIELD  BY 
PHASE TRANSFORMATION AND SHAPE 

Calculating results show: In every point of the 
model during quenching with water, Martensite 
transformation content is more than 96% and only 
small amount is Ferrite, Pearlite, Bainite and residual 
Austenite. The influence on the transient stresses by 
phase transformation comes mainly from Martensite 
transformation. 

During Martensite transformation, latent heat 
will be released, which retards the cooling velocity. 
The stresses considered phase transformation change 
smaller than not considered it, and Martensite trans- 
formation retards the thermal stresses. Meanwhile, it 
also shows that if ignored die influence of phase 

245 



transformation, the serious error will be produced 

during calculating. 
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Fig.4 The distributions of the transient stresses on step 

section 

The radiation term has certain effect on the 

transient stresses under high temperature condition. 

The radiation plays a role of supplementary external 

heat source. Its intensity is determined not only by 

the surface temperature, but also by the surface 
shape. 

The phase transformation and the heat radiation 

retard the cooling velocity, and lighten the thermal 

stresses. Because cooling velocity is lowed, the 

quenching process lasts longer than that in which the 

phase transformation and the heat radiation are ig- 

nored. Anyway, the residual stresses field is the 
thermal stresses. 

5. Conclusion 

From above, the conclusions can be obtained as 
following: 

(1) It is feasible to solve the transient stress 

distribution and the residual stress distribution of the 

steps axle by equation (9) based on equation (3). 

Also, the results are satisfying. 

(2) The phase transformation and shape influ- 

ence heavily on distribution of the transient stresses 

and the residual stresses during quenching with wa- 

ter of steps axle, which must be considered. Though 

both factors retards the action of thermal stresses 

during quenching, the thermal stresses takes the main 

part. 

(3) The heat radiation influences mainly during 

initial stage of quenching, while the phase transfor- 

mation does when temperature is below Ms. Both of 

them influence on the residual stresses distribution. 

Compared each other, the phase transformation acts 
more heavily. 
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On a Refined Heat Conduction Theory for Microperiodic 
Layered Solids 
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A refined averaged theory of rigid heat conductor with a microperiodic structure is used to solve a 
one-dimensional initial-boundary value problem of heat conduction in a periodically layered plate 
with a large number of homogeneous isotropic layers. In such a theory, the temperature 
9 = 8(x,t) (0<£x£L,t£0)   is   approximated  by      9(x,t) = 8 (x,t) + n.(x)9 (x,t),   where 

6 (x,t) represents a macro-temperature,  6 (x,t) is a temperature corrector, and r\ = TJ(X) is a 
0 1 

prescribed periodic micro-shape function; and the functions 6   =6 (x,t) and 6 =6 (x,t) are 

to be found by solving an initial-boundary value problem described by a system of linear partial 
differential equations with averaged coefficients subject to suitable initial and boundary conditions. 
A uniqueness theorem for the averaged problem is proved, and two particular initial-boundary value 
problems for a periodically layered semi-space are solved in a series form. Numerical examples are 
included 

Key Words: Microperiodic Layered Composites, Nonsteady Heat Conduction Problems. 

1. Introduction 

A formal solution to the one-dimensional initial- 
boundary value problem for a parabolic heat 
conduction equation in a layered plate has been 
obtained before by a number of authors (cf. e.g. Eqs. 
(2X20) in [1]; and references in [2]). When the plate 
is made of a large number of layers with different 
constant isotropic thermal properties, an analysis of 
the formal solution becomes involved, and usually 
ends up with an approximate numerical solution. The 
present paper deals with the problem by using a one- 
dimensional averaged heat conduction theory in 
which the plate composed of a large number of layers 
is replaced by a plate with smeared thermal 
properties, and the classical formulation of the 
problem is replaced by an averaged description. The 
description, referred to a micro-periodic layered plate, 
consists of a system of two partial differential 
equations with constant coefficients for two unknown 
temperatures 6=9 (x,t) and 9  =9 (x,t) 

0      0 11 
(0<x<L,t2 0) subject to suitable initial and 
boundary conditions; and an approximate solution 
takes the form    9(x,t) = 9 (x,t)+ri(x)9 (x,t), 

0 1 
where r\ = r\(x) is a micro-periodic shape function 
( cf. [2] and [3] ). In Section 2, the basic field 
equations of the averaged theory and formulations cf 
associated initial-boundary value problems for a 
microperiodic layered plate are presented. In Section 
3, a uniqueness theorem for the problems of Section 2 
is proved In Sections 4 and 5, the series solutions for 
a periodically layered semi-space subject to a sudden 

boundary heating and a laser surface heating, 
respectively, are obtained In Section 6, a numerical 
analysis of the solution corresponding to the laser 
surface heating of the layered semi-space, is 
presented Finally, in Section 7 results and 
conclusions are summarized. 

2. Basic field equations 

Consider a layered infinite heat conducting plate of 
finite dimensionless thickness L composed of n 
identical subunits which are thermally bonded to form 
a spatially periodic pattern as shown in Fig. 1 

Fig. 1. Configuration and coordinate system of a 
microperiodic layered plate. 

Each subunit consists of two layers which, in general, 
have different dimensions and are made of different 
homogeneous isotropic rigid heat conducting 
materials. 
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Let   l.,p.,C, and   k   ( i = 1,2 ), in this order, 
»ii j 

denote the physical dimension, density, specific heat, 
and thermal conductivity of the i-th layer in a 
subunit. If the interface conditions between any two 
adjacent layers are assumed to be of an ideal thermal 
contact type, i.e. the temperature and heat flux are 
continuous across an interface, and a thermal load is 
uniformly distributed over the boundary planes x = 0 
and x = L for every time t > 0, a heat conduction 
process in the layered plate can be described by a 
solution to the classical one-dimensional problem in 
which a parabolic heat conduction equation is to be 
satisfied for each layer, and suitable initial, interface 
and boundary conditions are to be met. If n is a 
large number (n-»oo), the classical problem is 
approximated by the dimensionless averaged initial- 
boundary value problem (cf. [2] and [3]). 

Findapair (6,0) definedfor OSx^L and 
0    1 

t > 0, that satisfies the field equations 

\ 

,Sx J 

e +^(a-p)-^-e =o 
o   K & i 

(4 + cty)e + Ky—9   =0 ya     '' i     'ex o 

(i) 

for 0 < x < L and t > 0 

subject to the initial conditions 

6 (x,0) = f (x), 6 (x,0) = g(x) (2) 

for    0 < x < L 

and the boundary conditions 

6 (0,t) = h(t),9 (L,t) = i(t)    for    t>0    (3) 
0 0 

where f,g,h,and i are prescribed functions. 
The constants   a,ß, y, and K in eqs. (1) are related 
to' the thermal properties of a subunit of the layered 
plate and a microshape function  TJ = TJ(X) by 

<kii   > 

ß = 

y =• 

2 
<PCT1     > 

<KTJ     > 

2~ 
<pCT|     > 

<pc> 
<k> 

1-- 
<kri> 

i        ,   -2 <kxkt]   > 
(4) 

K = - 
<kt|> 

<PCT1     > 

where  < F > stands for the mean value of a function 

F = F(x) on the interval [0,1] defined by 
1 

<F>=jF(x)dx 
0 

and   T| = dr|/dx. 

(5) 

From the definitions of a, ß, y, and K , we get 

a>ß>0     y>0   K*0 (6) 

Also, a modification of the problem (1X3), 
involving heat-flux boundary conditions is obtained if 
eqs. (3) are replaced by 

-<k>^e«(0't> = £l W ex   o 0 

<k>-£-9 (L,t) = q(t) 
ex o l 

(7) 
t>0 

where  q  andq   are prescribed functions. 
0        1 

Once a solution (6 ,9 ) to the problem (1X3) 
0    1 

or [ (1), (2), (7) ] is found, a temperature 6 in the 
plate is computed from the formula 

6(x,t) = 9 (x,t)+Ti(x)e (x,t) (8) 
0 1 

Due to an oscillatory character of T|(x) on 
[ 0, L ] ,   6 represents an oscillating function over 
the plate thickness for every t > 0. Also, for a smooth 
pair (9 ,9 ) on [0,L]x[0,oo), 9  is a continuous 

0    1 
function on [0,L]x[0,oo), but 59/5x may have 
discontinuities across the interfaces, due to continuity 
of Ti(x)on[0,L] and discontinuities of TI(X) at the 
interfaces. 

3. Uniqueness theorem 

Theorem.  The initial-boundary value problem 
(1X3) or   [ (1), (2), (7) ]   may have at most one 
solution. 
Proof of this theorem is based on the statement that a 
solution of the problem (1X3) or [ (1), (2), (7) ] 
corresponding to a zero thermal load satisfies a global 
conservation law in the form 

Lt, 

E(t).}}[(^+ßy)^9o(x,x)fchdx 

00 

n(«-ß)J f e;J(x,t)+j[£oo(x,*; dx = 0 

(9) 
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The function E = E (t) represents the total thermal 
energy released over the time interval [0,t] in the 
layered plate subject to a thermal load By virtue of 
ineqs. (6), E(t) ä: 0, and eq. (9) asserts that the total 
thermal energy of the plate subject to a zero thermal 
load vanishes for t>0. 

4. Temperature in a layered semi-space 
subject to sudden boundary heating 

N(x,t) = "V1 
2Vir 

-3/2 
exp -Xt-x  I AX 

• cmf * 
2^n = in!(n_1)!o 

/      \n_i  n-3/2      ( 2     \ 
(t-s;       s exp -Xs-x  /4s  ds 

x    (15) 

We let  L = n->», and solve the following initial- and X, = y(a-ß). 
boundary value problem. Find a pair  (6 ,6 ) that 

0   1 
satisfies the field equations 

V >> 

\dx 
2   a 

e +-i(a-p)—e =o 
OK &     1 

(10) 

e +Ky—e =o 
1 dx.  o 

for x > 0, t > 0 

The solution (13X15) converges uniformly for any 
positive and finite x and t; and for the admissible 
range of the constants  a, ß, and y [cf. (6) ]. 

5. Temperature in a layered semi-space 
subject to laser surface heating 

In this case we look for a pair (6 ,6 ) that satisfies 
0   1 

the field eqs. 

the initial conditions 

8 (x,0) = 6 (x,0) = 0   for x>0 
0 1 

and the boundary condition 

(11) 

(   2 ^ 
ä—J. e +i(a-ß)-^-e =o 

^2    aJ0lC *   l (16) 
U+ay 8 +KY-2-6   =0 vst     '' i     ' dx o 

for x>0, t>0 
f 1    for    t > 0 

0 (0,t) = H(t) = J 
0 0    for    t<0 

(12) 

Moreover,  6   and 6   are to vanish as   x -> eo for 
0 1 

every t > 0. Using a Laplace transform technique 
similar to that of [4], [5] and [6], the following series 
solution of the problem (10><12) is obtained 

x 
6 (x,t)=fN(x,T)dr (13) 

° 0 
t 

6 (x,t) = -*- f{l-exp[-ay(t-x)]}-|:N(x,x)dT 
1 a J ox 

0 
(14) 

where N = N(x,t) is the series of Neumann's type 
for an integro-ditierential equation associated with 
eqs. (10) 

the initial conditions 

9 (x,0) = 6 (x,0) = 0    for    x>0 (17) 
0 1 

and the boundary condition 

-<k>-2-e (0,t) = Y(t)    fort SO (18) 
dx   0 

where [7] 

n m 
Y(t) = Y t  exp(-bt   ) 

0 
(19) 

Here,     Y ,b,m, andn      are  positive  constants. 
0 

Morever, 6   and 6   are to vanish as x-*oo 
0 1 

for every t > 0. Clearly, Y(t) represents a "skewed" 
Gaussian temporal profile of the laser pulse. 

A solution to the problem (16X19) is obtained in the 
form [6] 

0 (x,t)= fY(T)M(x,t-T)dt 
ft J 

(20) 
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9 (x,t) = -Ky fY(T)^(x,t-T)dr    (21) 
1 J OX 

where 

and 

Y(t) = Jexp [-a y (t - x)] Y(x) dr (22) 

M(x,t) = L-^t exp(-Xt-x  /4t) 
< k > Vrc 

<k>V7t       , n!(n-l)W 
n = 1 o 

n-1 n-1/2 2 
(t-x)       x exp(-Xx-x  /4x)dx 

(23) 

The series solution (20)-(23) converges uniformly for 
any finite x and t > 0, and for the admissible range 
of parameters   a,ß,andy .describedbeineqs.(6). 

6. Numerical analysis 

Numerical analysis is restricted to the heating of a 
layered semi-space subject to a surface laser pulse. 
Each of the two-layer units is assumed to be made of 
the boron-epoxy layers, and T| = TJ(X) is a piece-wise 
linear function over the unit. So, the parameters a,ß, 
y, K, < k >, and X take the values : 

-5    2-1 -5    2 -1 
a = 7.17843x10    [m s    ]    ß= 3.04197x10    [ms    ] 

6-2 -5     2 -1 
y =2.0873x10 [sm    ]    K = -3.0842x10    [m s    ] 
< k >= 1.0625[W/ EK] X = 86.3403. The skewed 
Gaussian temporal profile of the laser pulse is 
assumed as 

3 
Y(t) = Y texp(-10 t),     so,  n=m=l, b=1000  in 

0 
7        -2 

eq.(19). In addition, we put Y =3x10 [Wm    ], 
0 

6* = l[K],and /* = 0.004[m], so t* = y (/*)2 = 

33.397 [s], and t = 0.029943t [s~ ].Here, 6 , 

/ ,and t stand for the temperature, length and time 
units, respectively. With such a choice of input data, 
a number of Figures showing G (x,t)and6 (x,t) 

0 1 
versus t for several fixed x 's, as well as temporal 
profiles of 8(x,t) for the fixed x 's, are presented 

7. Results and conclusions 

(i) formulate a one-dimensional initial-boundary 
value problem for a periodically layered plate; (ii) 
prove a uniqueness theorem for the problem; and (iii) 
solve two particular initial-boundary value problems 
for a layered semi-space in a closed series form. In 
such  a theory,  the temperature     8 = 6(x,t)   is 
approximatedbye(x,t) = e (x,t) + 7i(x)0 (x,t); 

0 1 
where       9 (x,t)and9 (x,t)    are   the   macrc- 

0 1 
temperature and temperature-corrector, respectively; 
and r\ = r|(x) is a prescribed microperiodic shape 
function. A numerical analysis of 6(x,t) for the 
layered semi-space subject to a laser surface heating 
indicates that : (a) a contribution of the macro- 
temperature 6 (x,t)to the total temperature 6(x,t) 

0 
is dominant over the whole space-time domain x>0, 
t > 0, except for a thin boundary layer in which the 
temperature-corrector   6 (x,t) plays a significant 

role; and (b) the temperature 6(x,t) is sensitive not 
only to a change of the material parameters but also 
to a change of the laser pulse characteristics. 
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